FURTHER REMARKS ON THE SURFACE VIS IMPRESSA CAUSED BY A FLUID-SOLID CONTACT

Janusz Badur*, Paweł Ziółkowski*

*Department of Energy Conversion, INSTITUTE OF FLUID-FLOW MACHINERY Gdańsk, Poland
E-mail: pziolkowski@karol.imp.gda.pl

ABSTRACT

It is well-known that, nano-mechanics should take into account not only physical phenomena occurring within the bulk but, first of all, the physical phenomena appropriate for a surface of two materials contact. The huge volume density of internal surfaces as well contours lines located within the nanomaterial results in our interest in, apart from classical form of mass, momentum and entropy transport, those modes of transportation where a carrier of physical property follows a free path having of a dimension greater than nanostructure characteristic dimension. The mode of transport dominated by mechanical, thermal and electrical slip of carried bounding off walls (a surface of separation) is called usually in physics “a ballistic mode”. In the paper the appropriate Newtonian surface vis impressa responsible for the ballistic mode of transport is defined, classified and explained. We postulate that generally surface vis impressa can be additively split into friction and mobility forces.

MOVING SHELL-LIKE CONTACT

We assume that the fluid-solid contact layer (denoted as $\mathcal{M}^+\mathcal{M}^-$) can be treated as thin domain moving in a space with a geometrical, migration velocity w. This shell-like domain divides the continuum into a continuum A - that is a fluid under consideration, and a continuum B which can be a free surface, solid body or second fluid, as in Fig. 1. If both A and B are fluids then it is the fluid-solid contact layer represents the moving interfacial region, where physical properties change in a radical manner. For instance in a thin transition layer between liquid and vapor, the change of density is so noticeable, that it looks like a jump throughout the layer thickness. Therefore, we assume that in the layer we observe so-called „apparent” material properties, quite different than in bulk continuum A and B. Thus we define an excess of layer density ρ_s [kg m$^{-3}$], the layer particle velocity v_s [m s$^{-1}$], an excess of layer momentum density $\rho_s v_s$, and a surface excess of momentum flux p_s, [1; 6; 7; 20].

In general, this layer moves with the geometrical velocity w that differs from material velocity v_A in A, velocity v_B in B, and velocity v_s in $\mathcal{M}^+\mathcal{M}^-$. In particular case, the velocity w denotes the rate of changing a phase transition surface within the fluid being at rest. Usually, the component w_{ns} normal to moving middle surface \mathcal{M}, differs from normal components of v_A, v_B and v_s. It practically means that there is also a mass transport across the layer. Indeed, the geometrical velocity field is not a priori known, and can be determined from a special evolution equation, [1; 19]. If $w = v_s$ then the moving layer is material, if $w = v_A I_s + w_{ns} n$ the surface is semi-coherent (Fig. 1). Navier and Stokes have assumed, that the surface layer density is equal to zero. Apparently, we want to determine the slip velocity v_s from an independent balance of the layer momentum. In special cases however, it simplifies to the well-known Cauchy balance of the boundary traction forces. For immiscible liquids being in contact, the tangential components $v_s I_s$ can be approximately described to be $\frac{1}{2} (v_A + v_B) I_s$. Quite similarly, only in a special case is $\rho_s = \frac{1}{2} (\rho_A + \rho_B) h$, where h is a finite thickness of the layer.

We introduce a new concept of an „excess of momentum flux” within the fluid-solid contact layer, which is described by a surface symmetrical diaide p_s. It governs the momentum transport within the layer, and therefore it has a tangential and normal components. We postulate the surface momentum flux in a following form:

\[
p_s(\xi) = p^{\alpha \beta} a_\alpha \otimes a_\beta + p^{\alpha n} n \otimes a_\alpha + p^{nn} n \otimes n,
\]

where ξ^α, $\alpha = 1, 2$ are a local surface curvilinear coordinates

1 We are based on a general surface kinematics elaborated by [20]. The general form of the surface balances of mass, momentum, angular momentum, energy, entropy, etc. is given by [16; 9; 21].
on \mathcal{M}, and a_α, n ($\alpha = 1, 2$) are the base vectors on the middle surface of the layer \mathcal{M}. Since the physical properties of the layer are unknown \textit{a priori}, they depend on the resulting apparent properties in both continua A and B. For example, elastic recoverable properties of p_s depend on an actual shape of the surface \mathcal{M}. Many authors postulate, that due to strong induced elasticity of the fluid layer, it changes from the elastic fluid (only recoverable spherical deformations) into an elastic fluid with recoverable shape deformations [7]. Similarly, owing to induced strong anisotropy, the internal viscosity of the fluid layer can be described by four apparent viscosity coefficients, [3; 11].

Let us now recall a few mathematical relations required for establishing of balance of the layer mass and momentum. At first the Weatherburn surface fundamental diabates can be introduced, [17]:

$$I_s = I - n \otimes n = \text{grad}_s x_s = a^{\alpha\beta} a_\alpha \otimes a_\beta,$$

(2)

$$\Pi_s = -\text{grad}_s n = b^{\alpha\beta} a_\alpha \otimes a_\beta,$$

(3)

which are called the first and second fundamental form of the surface \mathcal{M}. As far as the surface gradient acts also on the coordinate dependent base a_α, n, then the surface gradient of velocity is calculated to be:

$$\text{grad}_s v_s = (v^\alpha a_\alpha + v_n n) \otimes \nabla_\beta a^\beta = (v_\alpha a_\alpha - v_n b_{n\beta}) a^\alpha \otimes a^\beta + (v^\alpha b_{\alpha\beta} + v_n b_{n\beta}) n \otimes a^\beta,$$

(4)

and the surface divergence of velocity vector is based on the contraction $c_{1,2}$:

$$\text{div}_s v_s = c_{1,2} \text{grad}_s v_s = (v_\alpha a_\alpha - v_n b_{n\beta}) a^{\alpha\beta} + v^\alpha b_{\alpha\beta} + v_n b_{n\beta} = \text{div}_s (v_{s||}) - v_n I_b.$$

(5)

where the invariants of the second fundamental form of the curvature diade are: $I_b = \text{tr} \Pi_s = b^{\alpha\alpha} = b_1 + b_2 = \left(\frac{1}{r_1} + \frac{1}{r_2}\right), \Pi_b = \text{det} \Pi_s = \text{det} (b_{\alpha\beta})$ and $c_{1,2}$ denotes contraction of first and second base. In analogy to the three-dimensional case, the rate of surface deformation is defined as a symmetric part of the surface gradient of velocity:

$$d_s = \frac{1}{2} (\text{grad}_s v_s + \text{grad}_s^T v_s) = \left[\frac{1}{2} (v_\alpha a_\alpha + v_n b_{n\beta}) a^\alpha \otimes a^\beta + \frac{1}{2} (v^\alpha b_{\alpha\beta} + v_n b_{n\beta}) (n \otimes a^\beta + a^\beta \otimes n)\right].$$

(6)

The first invariant of d_s is in analogy to 3D:

$$I_{d_s} = \text{tr} d_s = c_{1,2} d_s = v^\alpha a_\alpha - v_n I_b.$$

(7)

Similarly, the surface gradient of the flux of momentum is:

$$\text{grad}_s p_s = p_s \otimes (\nabla_\gamma a^\gamma) = p^{\alpha\beta} |_s a_\alpha \otimes a_\beta \otimes a^\gamma + p^{\alpha\gamma} |_s (n \otimes a_\alpha \otimes a^\gamma + a_\alpha \otimes n \otimes a^\gamma) + (2p^{\alpha\gamma} b_{\alpha\gamma} + p^{mn} |_s) n \otimes n \otimes a^\gamma - p^{\alpha\beta} |_s (a_\gamma \otimes a_\alpha \otimes a^\gamma + a_\alpha \otimes a_\alpha \otimes a^\gamma) - p^{\alpha\beta} |_s (a_\alpha \otimes n \otimes a^\gamma + n \otimes a_\alpha \otimes a^\gamma),$$

(8)

and its divergence:

$$\text{div}_s p_s = c_{2,3} \text{grad}_s p_s = \left(p^{\alpha\beta} |_s - p^{\alpha\beta} b^{\alpha\beta} - t I_b p^{mn} \right) a_\alpha + \left(p^{\alpha\beta} b^{\alpha\beta} + p^{mn} |_s - t I_b p^{mn} \right) n.$$

(9)

where $c_{2,3}$ means scalar multiplication second & third vector of base (operation of contraction $c_{2,3}$).

MOMENTUM BALANCES WITHIN A CONTACT THIN LAYER

The local form of the momentum balance can be finally written as [2]:

$$\partial_t (\rho v) + \nabla (\rho v \otimes v + p) = \rho b \quad \text{for} \quad A \cup B,$$

(10)

$$\partial_t (\rho_s v_s) + \nabla_s (\rho_s v_s \otimes v_s) = - w_n I_b \rho_s v_s + \text{div}_s p_s + \partial_n (p_s n) + (p_A n_A + p_B n_B + f_{SA} + f_{SB}) = \rho_s b_s + \nabla_A (v_A - v_s) + \nabla_B (v_B - v_s) \quad \text{on} \quad \mathcal{M}.$$

(11)

Repeating now the reasoning of d’Alembert and Euler, we can define a surface d’Alembert-Euler acceleration vector to be:

$$a_s = \frac{ds}{dt} v_s = \partial_t v_s + (\text{grad}_s v_s) v_{s||}.$$

(12)

Employing the surface identity, instead of divergence of the convective flux of surface momentum we obtain:

$$\rho_s a_s = \partial_t (\rho_s v_s) + \text{div}_s (\rho_s v_s \otimes v_s)$$

(13)

The fluid-solid contact layer in generalized form is described now by the layer balances of mass and momentum. These are two additional nonlinear differential equations for two additional fields of unknowns, i.e. the surface mass density ρ_s and the layer slip velocity v_s. These equations are both geometrical and physically nonlinear, and should be solved using any discretization method (FEM, FVM), under assumption that the surface \mathcal{M} possesses an independent from the bulk space discretization. In the case when \mathcal{M}^- is a fixed solid surface, the geometrical velocity $w = 0$, and then discretization mesh could be fixed in the marching time of numerical solution. Apparently, if $w \neq 0$, then a moving, self-deforming mesh should be resolved together with surface mass and surface momentum equations, and the appropriate set of equations for bulk. There are

2An example how to define p_{sf} for the deformable wall is given in the paper by dell’Isola et al. [8], eq.(40)
different cases of using the Navier-Stokes layer balances in the literature. For instance, when \(A \) and \(B \) are ideal, non-viscous Euler fluids, and the surface density is equal to zero \(\rho_s = 0 \), and the layer momentum flux is omitted \(p_s = 0 \), then the surface mass and momentum equations reduce to the generalized form of the Rankine-Hugoniot jump conditions:

\[
\begin{align*}
\dot{m}_A &= \dot{m}_B \\
\dot{m}_A v_A + p_A n_A &= \dot{m}_B v_B + p_B n_B, \\
\end{align*}
\]

(14)

where \(p_A, p_B \) are thermodynamic pressure in the Euler fluids \(A \) and \(B \), respectively. If, additionally \(w = 0 \), and there is an additional contribution to the surface diade \(p_s = \gamma I_s \), then the layer momentum balance leads to the generalized Young-Laplace equation:

\[
\text{div}_s (\gamma I_s) + p_A n_A + p_B n_B = \left[\gamma \left(\frac{1}{r_1} + \frac{1}{r_2} \right) + p_A - p_B \right] n = 0.
\]

(15)

If an interfacial density is omitted i.e. \(\rho_s = 0 \), the difference between the external friction forces \(f_{SA} \) and \(f_{SB} \) simply vanishes then, and a single layer friction force exists:

\[
f_{AB} = f_{SA} + f_{SB} = \nu (v_A - v_B),
\]

(16)

where \(\nu \) is an external viscosity coefficient. It is an exact form of an external friction force proposed by Navier (\(v_B = 0 \)) and Stokes (\(v_B = \nu_{wall} \)). Assuming, that the continuum \(A \) is an incompressible viscous fluid: \(p_A = \rho I - 2\mu d \), and the continuum \(B \) is a rigid, fixed solid body: \(p_B = 0, v_B = 0 \), we obtain the Navier slip boundary condition:

\[
f_{AB} + p_A n_A = - \nu v_A + (\rho I - 2\mu d) n = 0 \quad \text{on} \quad \mathcal{M},
\]

(17)

where \(v_s = v_{AB} \mid \mathcal{M} \) is identified with the slip velocity.

Let note that the layer flux of momentum is responsible for recoverable and viscous transport: \(p_s = p_s^{(c)} + p_s^{(v)} \). The first most important part of the elastic recoverable diade \(p_s^{(c)} \), that is known as the capillarity diade, can be described by the surface tension \(\gamma \). This quantity was introduced to the process of mathematical modeling by Young, Laplace and Poisson. The second contribution comes from the recoverable stresses called the surface bending \(C_1, C_2 \), introduced by Gibbs. There is also a layer ,,normal pressure” \(\tau \), introduced by Stokes. These altogether lead to the following definition of the capillarity diade:

\[
p_s^{(c)} = \tau n \otimes n + \gamma I_s + CII_s, \quad \partial_t (p_s n) = \tau n,
\]

(18)

where \(2C = C_1 + C_2 \), and \(\text{div}_s p_s^{(c)} = \gamma I_s n + C (I_s^2 - 2I_b) n \). A quite general form of the capillarity diade has been proposed recently [1] as:

\[
p_s^{(c)} = \gamma_0 - II_s \gamma_1 + n \otimes I_s \text{div}_s (\gamma_1 - II_s \gamma_2),
\]

(19)

where the surface capillary measures can be defined to be spherical:

\[
\gamma_0 = \gamma I_s, \quad \gamma_1 = CII_s, \quad \gamma_2 = KIII_s.
\]

(20)

These capillary measures are expressed in terms of the first, second and third fundamental surface forms, and \(\gamma, C, K \) are the surface tension, bending and torque, respectively.

The viscous properties of the Navier-Stokes layer depend on the so-called ,,apparent viscosity” which, in general, possesses a transversal anisotropy, [11]. One can define the viscous surface stresses by using the surface diade of the rate of deformation and a normal change \(v_{n,n} \):

\[
p_s^{(v)} = \lambda' (\tau d_s) I_s + \lambda'' v_{n,n} n \otimes n + 2\mu' (\tau d_s) I_s + 2\mu'' (\tau' d_s - I_s).
\]

(21)

This diade does not undergo the classical 3D de Saint-Venant condition, saying that the viscous stresses must be traceless. For a special case when \(\lambda'' = \mu'' = 0 \), this constitutive relation was proposed by B.M.J. Boussinesq (1913), [4; 19]:

\[
p_s^{(v)} = (\lambda' - \mu') (\tau d_s) I_s + 2\mu' (\tau d_s) I_s.
\]

(22)

The formula for surface viscosity coefficients \(\lambda', \mu' \) needs extended investigations.

SURFACE FRICTION VIS IMPRESSA CLASSIFICATION

Let us consider now a more consistent velocity slip boundary conditions that should be consistent with the Newton postulate stating, that a friction phenomenon depends on three components: the pressure dependent part, the relative velocity part, and the square velocity dependent part. Let the Newton postulate be true for a fluid in the bulk as well as for the thin layer on a boundary surface realizing a contact with a solid surface. Then taking into account, we have more consistent definition of the surface friction force:

\[
f_s^f = f_{SS'} N \frac{v - v_{wall}}{|v - v_{wall}|} + \nu (v - v_{wall}) \\
+ f_s (v - v_{wall})^2 \frac{v - v_{wall}}{|v - v_{wall}|},
\]

(23)

where \(f_{SS'}, \nu, f_s \) are cohesive, external friction and kinematic friction coefficients and \(N = n - (p_A - p_B) n \) is contact normal force. Some consistencies of this condition can be simply recognized if we compare the internal and external coefficients that appear in the model. This consistency can even be extended on reversible properties of the model i.e. the internal (Euler) and the external (Stokes) pressures \(p \) and \(\tau \), respectively. In the Table I the comparison of these properties is shown.

The better consistency of the above model results from the fact that it needs three coefficients of internal friction (\(k_{vis}, \mu_1, \mu_2 \)) and three coefficients of external friction \(f_{SS'}, \nu, f_s \), respectively. Therefore, we can define a ratio between the internal and external friction by a dimensionless coefficient \(\lambda_{vis} \), and two lengths of velocity slip: \(l_1, l_2 \) (see: table 1). Having a measure of internal properties of friction, one can connect the external properties of friction at the fluid-solid contact layer by appropriate closures written for \(\lambda_{vis}, l_1, l_2 \), respectively.
The phase transition change, and the surface gradient of the

mobility force in the fluid-solid contact layer. This force, par-

tially given by Reynolds [18] and Maxwell [14], can be gener-

eralized to:

\(f_{SS'} \) \(\lambda_{vis} = k_{vis}/f_{SS'} \) \(\lambda_{vis} \) \(p \) \(\frac{p}{\varpi} \)

In this case the most important is a coefficient of diffusion mo-

bility coefficient, \(c_{vN} \) - the concentration-mobility coefficient, \(c_{v\varphi} \) - electro-

mobility coefficient, \(c_{v\varpi} \) - the phase mobility coefficient.

<table>
<thead>
<tr>
<th>Phenomena</th>
<th>Corresponding velocity</th>
<th>Driving potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermophoresis</td>
<td>(\mathbf{v}{wall} = c{v\varphi} \text{grad}_{\theta} \mathbf{\theta})</td>
<td>temperature (\theta)</td>
</tr>
<tr>
<td>diffusionphoresis</td>
<td>(\mathbf{v}{wall} = c{vN} \text{grad}_{x} \mathbf{N})</td>
<td>concentration (N)</td>
</tr>
<tr>
<td>electrophoresis</td>
<td>(\mathbf{v}{wall} = c{v\varphi} \text{grad}_{\phi} \mathbf{\phi})</td>
<td>electric potential (\phi)</td>
</tr>
<tr>
<td>pressurephoresis</td>
<td>(\mathbf{v}{wall} = c{v\varpi} \text{grad}_{x} \varpi)</td>
<td>pressure (\varpi)</td>
</tr>
<tr>
<td>phasephoresis</td>
<td>(\mathbf{v}{wall} = c{v\varpi} \text{grad}_{x} \mathbf{x})</td>
<td>order parameter (x)</td>
</tr>
</tbody>
</table>

COMBINED SURFACE FRICTION AND MOBILITY

Let postulate surface \(\text{vis impressa} \) to be:

\[
\mathbf{f}_{AB} = \nu (\mathbf{v} - \mathbf{v}_{wall} - c_{v\varphi} \text{grad}_{\theta} \mathbf{\theta}) .
\] (25)

The thermo-mobility coefficient \(c_{v\varphi} \) should be formulated, according to Maxwell’s slip formula [14], as a coefficient that is not dependent on the property of the solid surface:

\[
c_{v\varphi} = \frac{3 \mu}{4 \rho} .
\] (26)

Equation (25) is called the „Maxwell slip boundary layer“. Let us note that in this equation very particular role plays the gradient of temperature \(\theta \). It is a completely external surface effect which is not connected with any form of stress tensor. It means that the motion of the gas close to a solid surface, in general is governed by two kinds of forces. The first is a mechanical one, which is connected with the external viscosity, and the second one is a temperature gradient which drives of gas particle close to the surface from colder to hotter part. Therefore the coefficient of thermal mobility \(c_{v\varphi} \) is independent from mechanical layer properties and should be experimentally verified\(^5\).

Finally, let us recall Maxwell solution for a flow of a gas in a long capillary tube having inner radius \(\alpha \), which occurs under conductivity coefficients, respectively. Recently the phenomenon of jump con-

centration of salt in a gel mixture has been discovered by [12].

\(^3\)Electrophoresis was discovered by von Smoluchowski in 1916 [22]. See also: H.J. Keh, J.L. Anderson, Boundary effects on electrophoretic motion of colloidal sphere, J. Fluid Mech. 153,417-439 (1985)

\(^4\)These phenomena must be distinguished from the motion-less phenomena like: „temperature jump“, „concentration jump“, „potential jump“ related with the external heat conductivity, external mass diffusivity, and external electric

\(^5\)There are numerous modern papers that mention about the proper exper-

iments. The impressive electrokinetic properties predicted for a carbon nano-

tube channels have not yet been measured in careful experiments, [10].

Table 1. Comparison of a concise model of internal and external friction, according to Newton’s postulate. The model \(\mathbf{f} \) of a viscous bulk pressure has been proposed by Natanson [15].

<table>
<thead>
<tr>
<th>Characteristic ratio</th>
<th>Elastic pressure (p) [Nm(^{-2})]</th>
<th>Frictional pressure (\mu_{vis} = k_{vis}/\mu) [Pa]</th>
<th>Linear slip velocity (\mu_1) [Ns(^{-2})m(^{-2})]</th>
<th>Square slip velocity (\mu_2) [Ns(^{-2})m(^{-2})]</th>
<th>Characteristic ratio (\lambda_{vis} = k_{vis}/f_{SS'})</th>
<th>Characteristic ratio (\lambda_{press} = p/\varpi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{press})</td>
<td>(\lambda_{press} = p/\varpi)</td>
<td>(\lambda_{vis} = k_{vis}/f_{SS'})</td>
<td>(\lambda_{vis})</td>
<td>(\lambda_{vis})</td>
<td>(\lambda_{press})</td>
<td>(\lambda_{press})</td>
</tr>
</tbody>
</table>

Table 2. Five kinds of motions connected with the surface mobility of a particle immersed in a fluid at rest. Here: \(c_{v\varphi} \) - the thermo-mobility coefficient, \(c_{vN} \) - the concentration-mobility coefficient, \(c_{v\varphi} \) - electro-

mobility coefficient, \(c_{v\varpi} \) - the phase mobility coefficient.
two kind of driving forces. These forces are a bulk pressure transpiration due to difference of pressure at the ends of the tube, and the surface thermal transpiration due to difference of temperature at the same ends of the tube. Since the gas is flowing from higher to lower pressure and, simultaneously, from the colder to the hotter end, then these effects can be summarized. In a particular case, where the driving forces are opposite and equal themselves, there is no net outflow of gas from the capillary. Then an enhancement of mass flux due to the Maxwell slip is\(^6\).

\[
\frac{Q_{\text{Maxwell}}}{Q_{\text{Poussille}}} = \left(1 + \frac{4l_s}{\alpha}\right) \frac{8}{\pi} \phi \frac{\mu}{\rho a^2} \frac{d\theta}{dz} \left(\frac{dp}{dz}\right)^{-1}.
\] (27)

This enhancement is essential only if the inner radius \(\alpha \) is small in comparison with the slip length \(l_s \) and thermal mobility \(\phi \) is small. Thermal contribution to the slip is important when the gas is rarefied. Both driving forces (per unit of length of the pipe): \(dp \) and \(d\theta \), can be in opposition. In a particular case there is no flow in the pipe \(Q = 0 \). Then we have\(^7\):

\[
\frac{dp}{d\theta} = 6\mu^2 \frac{1}{\rho \alpha^2 + 4l_s a}.
\] (28)

For given temperature difference \(d\theta = 100 \text{ K} \) under the pressure of 40 mm of mercury, and assuming \(l_s = 0.00016 \text{ cm} \), this formula leads to the resulting pressure at the hot end which exceed that at the cold end by about 1.2 millionth of the atmosphere. Modern numerical techniques allowed us to reconstruct this experiment by means of Finite Volume Method. Obtained results are however slightly different - see Fig. 2, b) for which \(\dot{m} = 0 \).

CONCLUSION

In the paper the applications of the extended solid-fluid contact equations, including the different surface mobility mechanisms are presented in order to explain the enhanced flow in micro-channels.

Boundary force is a sum of friction and mobility force: \(f_{BV} = v (V - v_{\text{wall}}) + (c_{s,\omega} \text{grad}_{\omega} - c_{s,\theta} \text{grad}_{\theta} - c_{s,c} \text{grad}_{c}) \) where \(c_{s,\omega} \) - pressure transpiration; \(c_{s,\theta} \) - thermal transpiration; \(c_{s,c} \) - concentration transpiration.

Generalization of the fluid-solid contact boundary slip layer, formulated in the present paper, supplements the original Navier-Stokes model by additional surface quantities like the surface mass and the surface momentum flux. In the present case the slip velocity \(v_s \) is determined from the solution of the complete balance of momentum (11) written within the layer.

Since the stress tensors \(p_A, p_B \) are determined in the bulk and cannot be arbitrarily changed at the boundary, such an approach leads to the separation for those constitutive relations which can be imposed to fulfill the surface balance of momentum. There is still an open place for the modeling of the surface momentum diade \(p_s \) and the surface friction force \(f_{s,B} \), where indeed a second gradient of surface velocity can be postulated.

REFERENCES

\(^6\) Another objective for analytical study lies in exploring the underlying physics of the so called Knudsen paradox. Explanations of this paradox cannot be given by model of Navier slip layer, and needs more advanced method of modeling, [1; 13]. Let recall, that the Knudsen paradox relates to the presence of a minimum of mass flow rate in a function of the Knudsen number. Thus, the exploration of Knudsen paradox and its full understanding also require a considerations on the limit of continuum approaches. It is fact, that the Knudsen-Gaede flow should be a fundamental benchmark for nanoflows of rarefied gases like the Poussille or Couette flow at macro-scale.

\(^7\) See: ([14], Appendix.eq.(81))

