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ABSTRACT
We associate the following physical co-mover conditions of to different frame choices: i) Eckart: particle flow, ii) Landau-
Lifshitz: energy flow, iii) Jüttner: moving thermometer frame. The role of fixing a flow-frame is analysed with respect to local
equilibrium concentrating on dissipative currents and forces in single component relativistic fluids. The special role of a ”Jüttner
frame” is explored and contrasted to the more common Eckart and Landau-Lifshitz choices.

INTRODUCTION

In dissipative theories of relativistic fluids we deal with four
fundamental questions.

The first considers causality. Only divergence type theories
are, in general, causal because there the symmetric hyperbolic-
ity of the system of nonlinear evolution equations is established
by construction [1; 2; 3; 4; 5; 6]. The weaker version of causal-
ity requires for the symmetric hyperbolicity only for the lin-
earized equations, and allows for characteristic speeds less than
the speed of light [7]. This weak causality was studied in the
Israel-Stewart theory; numerous resulting inequalities are given
in [8]. From a physical point of view the causality of theories
with parabolic differential equations should also be possible. In
this case the validity of the continuum description is restricted
by the characteristic maximal speeds [9; 10; 11; 12]. A neces-
sary condition for this type of restrictions requires the damping
of the perturbations, equivalent to the the linear stability of the
theory [13].

The second question deals with generic stability. Generic
stability is the linear stability of the homogeneous equilibrium
solutions. The simplest relativistic generalization of the nonrel-
ativistic Fourier-Navier-Stokes equations was proved to be un-
stable by Hiscock and Lindblom [14]. In the sequel they formu-
lated mathematical conditions of generic stability of the Israel-
Stewart theory [8]specified to the Eckart frame. However, due
to the overwhelming complexity of these conditions they are
not connected to reasonable properties of equations of state or
transport coefficients. Since then several different propositions
arose suggesting a first order theory, mostly motivated by the
restoration of the generic stability [15; 16; 12; 17; 18; 19; 20;
21].

The third question is the correct distinction between ideal
and dissipative fluids, especially in a relativistic context. It is
customary to assume that perfect, nondissipative fluids are char-
acterized by a special form of the energy-momentum tensor and
the particle current density vector [22; 23]. On the other hand
physical dissipation is accompanied by nonzero entropy produc-

tion. From this point of view there is a more extended family of
perfect fluids beyond the customarily treated ones [24]. These
distinctions are technically addressed by the so called matching
conditions [25; 20; 21; 26].

Finally the proper choice of flow-frames continues to be an
unsettled question [16]. One generally believes that in relativis-
tic fluids the flow field ua can be chosen arbitrarily, since it is
a somewhat vaguely defined physical property, belonging to the
flow of volatile quantities, once the energy, once the conserved
charge. In this situation it is customary to fix the flow either to
the motion of particles (Eckart frame) [27], or that of the energy
density (Landau-Lifshitz frame) [28]. The flow fixing deter-
mines a continuous set of local rest frames in the fluid: we shall
refer to the different choices of fixing the flow as flow-frames or
frames. Contrary to the belief in a free choice of the flow-frame
we point out that this may not be completely arbitrary, as one
associates a given physical content of the dissipation to each.
Further choices than the two classical ones should be preferred
by demanding a given form of local Gibbs relations.

In this paper we present the general flow-frame, the separa-
tion of perfect and dissipative parts of energy-momentum and
particle number current density and their relation to generic sta-
bility. The key theoretical aspect connecting these problems is
relativistic thermodynamics. Our most important observation
is that the usual assumption of kinetic equilibrium by introduc-
ing the velocity field parallel to the local thermometer and La-
grange multiplier field βa also appearing in the collision invari-
ant ψ = α + βaka, already acts as a flow-frame fixing. This
choice we tag as thermometer frame or Jüttner frame, distin-
guishing from the Eckart, Landau-Lifshitz and other conven-
tions.

GENERAL ONE COMPONENT DISSIPATIVE RELA-
TIVISTIC FLUIDS

In this paper the Lorentz form is given as gab =
diag(1,1,1,1) and all indexes a,b,c, ... run over 0,1,2,3. We
use natural units, h = k = c = 1.
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A single component fluid is characterized by the particle
number four-vector Na and the symmetric energy-momentum
density tensor T ab. The velocity field of the fluid, the flow-
frame ua, introduces a local rest frame and the basic fields Na

and T ab can be expanded by their local rest frame components
parallel and perpendicular to the flow:

Na = nua + ja, (1)
T ab = euaub +qaub +uaqb +Pab. (2)

Here n is the flow-frame particle number density, ja is in this
frame the non-convective particle number current density, e is
the energy density, qa is the momentum density and Pab is the
pressure tensor. These components are flow-frame dependent,
in particular jaua = 0, qaua = 0 and Pabub = 0. Introducing
the substantial time derivative d

dt := ua∂a denoted by and over-
dot, the balances of the particle current density and energy-
momentum are expressed by the local rest frame quantities:

∂aNa = ṅ+n∂aua +∂a ja = 0, (3)
∂bT ab = ėua + eu̇a + eua

∂bub + q̇a +qa
∂bub +

ua
∂bqb +qb

∂bua +∂bPab = 0a. (4)

The energy and momentum balances are the time and space-
like components of the energy-momentum balance projected in
the flow-frame:

ua∂bT ab = ė+ e∂bub +uaq̇a +∂bqb−Pab
∂bua = 0, (5)

∆
a
c∂bT cb = eu̇a +∆

a
bq̇b +qa

∂bub +qb
∂bua +∆

a
c∂bPcb = 0a.(6)

The frame related quantities are important in the separation
of the ideal and dissipative parts of the basic fields. This separa-
tion is best performed by analyzing the thermodynamical rela-
tions. In order to achieve this one postulates the existence of an
additional vector field, the entropy current as a function of the
basic fields Sa(Na,T ab). It must not decrease by fulfilling the
condition of the balances (3) and (4). That conditional inequal-
ity can be best represented by introducing the Lagrange-Farkas
multipliers1 α and βa, respectively:

Σ := ∂aSa +α∂aNa−βb∂aT ba ≥ 0. (7)

The left hand side of this inequality shows, that the definition
of the entropy production is done before specifying the flow-
frame. However, the separation of ideal and dissipative parts
of basic physical quantities, is a consequence to the choice of
that flow-frame. Citing the authors of [32], when arguing about
the uniqueness of the Landau-Lifshitz frame “The uniqueness
of the energy frame comes from ... the physical assumption that
the dissipative effect comes from only the spatial inhomogene-
ity.“. However, what is spacelike is a frame dependent question
and one hopes only that physical systems may reveal by their
internal dynamics a physical ground for such a separation. A
possible candidate for this separation can be the thermometer
vector, βa, reconstructable from observations of a multiparticle
spectra stemming from a relativistic fluid.

1Lagrange multipliers are introduced for conditional extrema. For condi-
tional inequalities Gyula Farkas suggested analogous quantities and proved the
corresponding theorem of linear algebra, called Farkas’ lemma [29; 30; 31].

THERMODYNAMICS OF RELATIVISTIC FLUIDS –
EQUILIBRIUM

The concept of perfect fluids deals with the absence of dissi-
pation, the entropy production vanishes:

Σ0 = ∂aSa
0 +α∂aNa

0 −βb∂aT ba
0 = 0. (8)

The equilibrium entropy density Sa
0 is connected to the equi-

librium particle number density Na
0 and equilibrium energy-

momentum density T ab
0 by the following definition of the

isotropic pressure:

p0β
a = Sa

0 +αNa
0 −βbT ab

0 . (9)

Standard kinetic theory definitions and calculations satisfy
the above expressions. Then α and βa are coefficients in the
collision invariant of the equilibrium distribution function, ψ =
α+βaka, and the pressure is that of an ideal gas p0 = n0T .

Kinetic theory describes a perfect fluid by the detailed bal-
ance requirement. Out of equilibrium dissipation can occur.
In a dissipative fluid all physical quantities in principle devi-
ate from their local equilibrium values. There also may exist
non-dissipative currents (presumably driven by non-dissipating
forces, like the Lorentz force in magnetic fields). The thermo-
dynamic approach aims at the separation of dissipative and non-
dissipative local currents, in order to ensure the positivity of the
expression (7). Physical freedom in the choice of a flow-frame
should be restricted to different handlings of non-dissipative
currents.

It is natural to introduce the Jüttner frame ua
J defined by the

direction of βa (thermometer motion):

ua
J =

βa√
‖βaβa‖

. (10)

In that frame the equilibrium fields are decomposed as:

Na
0 = nJua

J , (11)
T ab

0 = eJua
Jub

J− p∆
ab
J , (12)

Sa
0 = (βJhJ−αnJ)ua

J , (13)

where hJ = eJ + p0 is the equilibrium enthalpy density in the
Jüttner frame, and βJ = βaua

J = 1/TJ is the reciprocal Jüttner
temperature. α, βa and p0 do not carry a frame index, because
they are introduced before specifying the flow-frame. On the
other hand the representations (11)-(13) are frame dependent. In
case of a general flow-frame ua, that is not parallel to βa, one can
characterize this difference by introducing wa = βa/(βbub)−ua.
Then wa is orthogonal to ua (waua = 0) and spacelike (wawa =
−w2). The Lagrange multiplier four-vector, βa, can be splitted
as

β
a = βJua

J = β(ua +wa), (14)

where β = βaua is the reciprocal temperature in a general frame
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defined by ua. The equilibrium fields in this frame are given as

Na
0 = n0ua + ja

0, (15)

T ab
0 = e0uaub +qa

0ub +qb
0ua− p∆

ab +
qa

0qb
0

h0
, (16)

Sa
0 = (βh0 +βwbqb

0−αn0)ua +βqa
0−α ja

0. (17)

Here β = βJ/
√

1−w2, n0 = nJ/
√

1−w2, e0 =
(eJ + pw2)/(1−w2), α and p0 does not change, ja

0 = n0wa,
qa

0 = h0wa [24]. (15)-(17) and (11)-(13) are the forms of the
same equilibrium fields in the Jüttner and in the general frames
respectively. In the specific equilibrium the Jüttner, Eckart and
Landau-Lifshitz frames coincide, the different choices lead to
the same condition: wa = 0.

THERMODYNAMICS OF RELATIVISTIC FLUIDS –
OUT OF EQUILIBRIUM

In classical non-equilibrium thermodynamics, without inter-
nal variables, one assumes that the gradients of the equilibrium
fields characterize the deviation from local kinetic equilibrium.
In that case the concept of local equilibrium is not modified.
The internal variable theories, like the Israel-Stewart theory [33;
34; 25; 35; 36] or GENERIC [37; 38], choose a different char-
acterization: local equilibrium is modified, some formerly dis-
sipative currents appear among the state variables and as a
conseqence their contribution may reduce the entropy produc-
tion. The relativistic theories revealed that the flow-frame fixing
plays a special role in the specification of local equilibrium. It
has been an observation of Planck and Einstein, that the mo-
mentum density (energy current density) is not purely dissipa-
tive and therefore in relativistic theories it has to be taken into
account even in local equilibrium [39; 40].

Our starting point is the fundamental inequality of the second
law (7). We introduce the following relation of the fields out of
equilibrium, as a generalization of (9):

Sa +αNa−βaT ab = Φ
a. (18)

With a general Φa this relation is valid without any restriction.
In a general flow-frame, ua, we define the thermostatic pressure
as:

p =
uaΦa

β
. (19)

Therefore the general form of the potential Φa can be written as

Φ
a = βp(ua +ga), where uaga = 0. (20)

The parallel and perpendicular components of (18) to the flow
ua are

s+αn−β(h+wbqb) = 0, (21)
Ja +α ja−β(qa +wbΠ

ab)+βp(wa−ga) = 0a, (22)

where h = e+ p and Πab = Pab + p∆ab is the viscous pressure.
Then we rewrite the entropy production (7) with flow related

quantities:

Σ = ∂aSa +α∂aNa−βa∂bT ab =−Na
∂aα+T ab

∂aβb +∂aΦ
a =

−nα̇+hβ̇+qa(βwa)̇+β ṗ+Π
ab

∂aβb− ja
∂aα+qa

∂aβ+

βu̇b(qb−hwb)+βqaub
∂awb + p(ga−wa)∂aβ+

pβ∂
a(ga−wa)+ga

β∂a p. (23)

Thermodynamics is taken into account by the following two
postulates.

1) The underlined part in the above expression with proper
time derivatives (total differentials) is zero.

β
d
dt

p = n
d
dt

α−h
d
dt

tβ−qa d
dt
(βwa). (24)

This is the relativistic Gibbs-Duhem relation. Considering this
together with the vanishing differential of (21), we obtain the
Gibbs relation [41]:

β(de+wadqa) = ds+αdn. (25)

Based on this result we conclude that the entropy has to be given
by a functional relationship between the local densities (but cer-
tainly including the momentum density qa), i.e. the proper rela-
tivistic and local equation of state is a function s(e,qa,n). It has
the following partial derivatives:

∂s
∂e

∣∣∣∣
qa,n

= β,
∂s
∂n

∣∣∣∣
e,qa

=−α,
∂s

∂qa

∣∣∣∣
e,n

= βwa, (26)

identifying the thermodynamical entropic intensive parameters
as being β, α = βµ and βwa. The four-vector wa is constrained
by its orthogonality to the local flow, so it contains independent
information on a spatial three-vector only. In isotropic media
this degree of freedom is reduced to the length of this vector, w2.
In cases containing radiation it appears as a velocity parameter
of the Doppler shift [41].

By utilizing the above functional form of the equation of state
one derives that the pressure, the intensive parameter associated
to mechanical work, satisfies the following four-vector general-
ized Gibbs-Duhem relation, now written by the traditional dif-
ferentials:

β∂a p = n∂aα−h∂aβ−qb
∂a(βwb). (27)

2) Our second postulate is ga = wa. By doing so we spell
out the fundamental compatibility of non-equilibrium (18) with
the equilibrium (9) definitions of pressure. In this way we treat
the non-dissipative part of the thermodynamical potential, and
with that the influence of the pressure gradient on the entropy
production rate possibly closest to the ideal gas behavior. This is
a special matching condition known from kinetic theory (δn =
0, δe = 0): in this case the pressure four-vector Φa is parallel to
the thermometer vector βa.

Now a short calculation reduces (23) to a form collecting
terms according to the gradients of intensives. A chemical dif-
fusion part is associated to ∂aα, a heat diffusion (Fourier-) part
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to the gradient of β, and finally a viscosity term with the sym-
metric gradient tensor of the full four-vector ∂aβb. We also gain
one further term containing the gradient of the difference be-
tween ua and wa. The antisymmetry of the multiplier enforces
the antisymmetry of this velocity related gradient, therefore this
term we tag as ”vorticity”. We arrive at the following expres-
sion:

Σ = (nwa− ja)∂aα+(qa−hwa)(∂aβ+βu̇a)

+ (Πab−q(awb))∂aβb +q[bwa]
∂a(β(ub−wb))≥ 0. (28)

Here q(awb) and q[awb] denotes the symmetric and antisymmet-
ric parts of qawb respectively. (28) is the entropy production
rate without fixing the flow-frame. For a perfect fluid, charac-
terized by (15)-(16), the local entropy production is zero. Now it
is straightforward to identify thermodynamic fluxes and forces
and establish functional relationships, that are strictly linear in
the first approximation2:

Diffusive Thermal Viscous Vortical
Fluxes nwa− ja qa−hwa Πab−q(awb) q[bwa]

Forces ∇aα ∇aβ+βu̇a ∆(bc∇a)βc ∆[bc∇a](β(uc−wc))

Table 1. Thermodynamic fluxes and forces in a general flow
frame

Here ∇a =∆b
a∂b. The corresponding linear response relations

for isotropic continua are:

nwa− ja = D∇
a
α+σ(∇a

β+βu̇a), (29)
qa−hwa = σ∇

a
α+λ(∇a

β+βu̇a), (30)

Π
ab−q(awb) = ζ∆

ab
∂

c
βc +2η∆

〈bc
∇

a〉
βc, (31)

q[bwa] = χ∆
[bc

∇
a](β(uc−wc)). (32)

Here 〈〉 denotes the symmetric traceless part in the bracketed
indices, λ is the heat conduction coefficient, D is the diffusion
coefficient, σ is the Soret-Dufour coefficient of thermal diffu-
sion. ζ is the bulk viscosity, η is the shear viscosity, and χ is
the vortical viscosity coefficient. Because of the nonnegative
entropy production (28) the linear transport coefficients must
fulfill the following inequalities:

D≥ 0, λ≥ 0, λD−σ
2 ≥ 0, ζ≥ 0, η≥ 0, χ > 0. (33)

Here the first three inequalities are coupled channel conditions
for stability, while the last three are independent ones.

The procedure described here ensures the existence of a ho-
mogeneous flow field as a time independent solution of the
equations of motion of the fluid. That is why deviation from
local equilibrium is best characterized by gradients of the basic
fields in the first approximation.

In the following we study some important particular choices
for the flow-frame.

THERMOMETER FRAME

The thermometer or Jüttner frame is the natural choice in ki-
netic theory calculations. In this case the direction of βa defines
the flow-frame similarly to the natural frame in perfect fluids:

2Since dissipative fluxes are orthogonal to ua, only the projected gradient
terms, ∆a

b∂b, constitute thermodynamical forces.

β =
√
‖βbβa‖ and ua = βa/β. In this section we apply this def-

inition of the flow-frame. Then the local equilibrium relations
are:

s+αn−βh = 0, ds+αdn−βde = 0. (34)

The entropy current density, Ja satisfies

Ja +α ja−βqa = 0a, (35)

and the entropy production rate fulfills the inequality,

Σ =− ja
∂aα+qa(∂aβ+βu̇a)+βΠ

ab
∂aub ≥ 0. (36)

This form of the entropy production was derived originally
by Eckart restricting to the case ga = wa = 0.

Eckart identified the following thermodynamic fluxes and
forces

Diffusive Thermal Mechanical
Fluxes − ja qa βΠab

Forces ∇aα ∇aβ+βu̇a ∆(bc∇a)uc

Table 2. Thermodynamic fluxes and forces by Eckart.

Unfortunately in this case a generic instability occurs, the lin-
ear instability of the homogeneous equilibrium, as it was proved
by Hiscock and Lindblom in [14]. Nonnegative entropy produc-
tion is established only if considering the basic balance equa-
tions (for energy, momentum and further conserved Noether-
charges) as constraints. However, by deriving (36) the balance
of momentum does not enter the calculations. Therefore the
linear relation between the thermal part of the fluxes and forces
with the acceleration term, βu̇a, connects changes in these quan-
tities irrespective to the momentum balance equation (6). A cor-
rect treatment of thermodynamic forces and fluxes on the other
hand should introduce the momentum balance into the above
entropy production formula. A short calculation leads to:

Σ =
(n

h
qa− ja

)
∂aα− β

h
qa
(

q̇a +qa∂bub +qb
∂bua +∂bΠ

b
a

)
+ βΠ

ab
∂aub ≥ 0. (37)

This step makes an important difference with respect to stabil-
ity properties of the homogeneous equilibrium of a fluid. The
corresponding thermodynamic fluxes and forces in the Jüttner
frame are

Diffusive Thermal Mechanical
Fluxes n

h qa− ja −β

h qa βΠab

Forces ∇aα Xa = ∆abq̇b +qa∂bub +qb∂bua +∆ac∂bΠb
c ∆(bc∇a)uc

Table 3. Thermodynamic fluxes and forces in Jüttner frame
providing generic stability

Here Xa is a convenient abbreviation for the thermal force,
the thermodynamical force associated to the dissipative current
of the heat. Linear transport relations for isotropic continua in
the Jüttner frame can now be easily established:

n
h

qa− ja = D∇
a
α+σ Xa, (38)

−β

h
qa = σ∇

a
α+λXa, (39)

βΠ
ab = ζ∆

ab
∂cuc +2η∆

〈b
c ∇

a〉uc. (40)
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With this modification the generic stability of the theory in
Jüttner fframe is established: the heat transfer vector qa receives
a positive relaxation factor, β/hλ > 0. It is easy to realize that
by ignoring viscosity, component diffusion and cross effects, in
homogeneous equilibrium, where all spacelike projected gradi-
ents of the velocity field vanish, the only surviving term in the
thermal force is that with the total time derivative of the heat
vector:

λXa = λ∆
abq̇b =−

β

h
qa. (41)

Multiplied by qa this leads to a relaxation equation for the length
of the vector, Q =−qaqa as follows

Q̇ =−2
β

hλ
Q. (42)

This means a relaxation towards the qa = 0 value of the energy
current density.

An important property of these equations is the expected
generic statiblity of the homogeneous equilibrium. Without the
detailed calculations (to be shown elswhere) we want to empha-
size that the conditions of generic stability are purely thermody-
namic. Namely, it is fulfilled whenever the transport coefficients
λ, η̃ are nonnegative and the following inequalities for thermo-
dynamic stability i.e. the concavity of the entropy s(e,n,qa) are
satisfied:

∂eT > 0, ∂n
µ
T

> 0 ∂eT ∂n
µ
T
−
(

∂nT
T

)2

≥ 0. (43)

OTHER FLOW-FRAMES

The other flow frames can be conveniently defined in our
general framework.

The Eckart frame is defined by the direction of the particle
current density vector ua = Na/

√
‖NbNb‖. One realizes that in

case of dissipative fluids the Jüttner and Eckart frames do not
coincide.

In case of a Landau-Lifshitz frame the flow field is de-
fined by the direction of the momentum density vector ua =
ubT a

b /‖ucT d
c ‖, therefore qa = 0a. In case of dissipative fluids

the Jüttner and Landau-Lifshitz frames also do not coincide.
However, in the absence of qa, the thermodynamic relations are
similar to the ones in a Jüttner frame

s+αn−βh = 0, ds+αdn−βde = 0, ndα−hdβ−βdp = 0.
(44)

In principle there are several further possibilities of frame
fixing. One of them introduces wa = βa/h. This choice fixes
the velocity field compatible to some kinetic theory calculations
[24; 18].

Once a choice of the linear response has been made, one can
transform the description in one frame to the other. The differ-
ent transport coefficients are not equivalent, a constant invariant
coefficient may become flow-frame dependent in other frames.
Wether the primary flow-frame independent choice is preferred
or not requires further investigations.

SUMMARY

Thermodynamic relations in relativistic fluids adhore to flow-
frames, while dividing spacial homogeneous changes from the
forces enforcing this homogeneity. It is made transparent in
the train of thoughts from (18) to (23), where we calculated
entropy production separating comoving time derivatives and
spacial gradients. We have seen, that α, βa and p are flow-
frame independent. Then local equilibrium was postulated by
the thermodynamic relation (25), containing homogeneous ther-
modynamics. In [41], presenting a different reasoning, we have
shown that the different transformation formulas of the relativis-
tic temperature, due to Planck-Einstein, Blanus̆a-Ott, Landsberg
and Doppler, can be unified and reasonably explained in exactly
this thermodynamic framework.

We propose that the thermometer frame, defined in (10),
should be a preferred choice. In general βa can be divided into
parts orthogonal and parallel to the flow ua: βa = β(ua +wa),
where uawa = 0. We have revealed how far this choice differs
from the Eckart and Landau-Lifshitz frames. There are argu-
ments, that the widely used Landau-Lifshitz frame should be
perferred [10; 42]. However, these studies do not distinguish
the thermometer frame.

The entropy production in a general frame (28) helps to rec-
ognize

– that viscous pressure is damps the inhomogeneities in βa,
– that there are perfect fluids with zero entropy production
but ja/n = qa/h = wa 6= 0 and Πab = hwawb 6= 0,
– there is a vorticity related dissipative term.

Furthermore we have mentioned, that generic stability is prop-
erly derived if the momentum balance constraint is also consid-
ered in the calculation of the entropy production (36).

In our previous works we have shown further examples of
flow-frames. In [12; 17; 43; 41] the wa = qa/e case was ex-
plored and in [24] and [18] we have analyzed the kinetic theory
compatibility and thermodynamics when wa = qa/h. Thermo-
dynamic considerations show, that the coupling of the momen-
tum balance to the entropy production cannot be avoided [43].
It was proven independently of the Eckart or Landau-Lifshitz
frame for wa = qa/e in [17], for the wa = qa/h case a partial
proof was given in [18].

ACKNOWLEDGEMENT

The work was supported by the grants Otka K81161,
K104260 and TT 10-1-2011-0061/ZA-15-2009. The authors
thank Etele Molnár for valuable discussions.

REFERENCES

[1] R. Geroch. On hyperbolic ”theories” of relativistic dissi-
pative fluids. 2001. arXiv:gr-qc/0103112.

[2] R. Geroch. Relativistic theories of dissipative fluids. Jour-
nal of Mathematical Physics, 36(8):4226–4241, 1995.

[3] R. Geroch and L. Lindblom. Dissipative relativistic fluid
theories of divergence type. Physical Review D, 41:1855–
1861, 1990.

[4] R. Geroch and L. Lindblom. Causal theories of dissipative
relativistic fluids. Annals of Physics, 207:394–416, 1991.

[5] I-S. Liu, I. Müller, and T. Ruggeri. Relativistic thermody-
namics of gases. Annals of Physics, 169:191–219, 1986.

550



[6] J. Peralta-Ramos and E. Calzetta. Divergence-type non-
linear conformal hydrodynamics. Physical Review D,
80:126002, 2010.

[7] Shi Pu, Tomoi Koide, , and Dirk H. Rischke. Does stability
of relativistic dissipative fluid dynamics imply causality?
Physical Review D, 81:114039, 2010.

[8] W. A. Hiscock and L. Lindblom. Stability and causality in
dissipative relativistic fluids. Annals of Physics, 151:466–
496, 1983.

[9] G. Fichera. Is the Fourier theory of heat propagation para-
doxical? Rediconti del Circolo Matematico di Palermo,
XLI:5–28, 1992.
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