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hem.msu.ruABSTRACTIn this paper we 
onsider extended thermodynami
 theory based on the postulate that entropy density is a fun
tionof the internal energy density and its time derivative. Using fundamental equation and the balan
e equation forthe internal energy density, we 
an write the entropy balan
e equation and obtain expressions for the entropy �uxand the entropy sour
e. Further we 
onsider tools of the rational thermodynami
s, namely Lagrange multipliesmethod. We start from the entropy balan
e equation (entropy inequality) and suppose that entropy �ux andentropy produ
tion are fun
tions of the heat �ux and heat �ux rate. De�nitions of the generalized temperatureand new intensive quantity as fun
tions of the Lagrange multipliers lead to the fundamental equation (generalizedGibbs equation) and expli
it expressions for the entropy �ux and entropy produ
tion.INTRODUCTIONConventional version of extended irreversible thermo-dynami
s [1-5℄ is based on the postulate that entropy den-sity s is fun
tion of the dissipative �uxes. Let us 
onsiderthe heat 
ondu
tion in a rigid isotropi
 body at rest with-out sour
e term. For the system under 
onsideration
s = s(u,q), (1)where u is the internal energy density, q the heat �ux. Inthis paper, we 
onsider extended thermodynami
 theory[6-9℄ based on the postulate that the entropy density sis a fun
tion of the internal energy density u and timederivative u̇:
s = s(u, u̇), (2)where u̇ = ∂u/∂t and t is the time. The total di�erentialof the entropy density has the form

ds =
∂s

∂u
du+

∂s

∂u̇
du̇. (3)Let us de�ne generalized temperature θ and new intensivequantity Λ in analogy with the 
lassi
al theory:

θ−1 =
∂s

∂u
, θ−1Λ =

∂s

∂u̇
, (4)where θ = θ(u, u̇) and Λ = Λ(u, u̇) depend on the addi-tional variable u̇. Then, the fundamental equation is givenby

θds = du + Λdu̇,and
∂s

∂t
= θ−1

∂u

∂t
+ θ−1Λ

∂u̇

∂t
. (5)The se
ond di�erential of the entropy density has theform

d2s = dθ−1 du+ d(θ−1Λ) du̇. (6)

Further, let us postulate the 
onvexity of s as fun
tion of
u and u̇. Then, we have inequality

∂θ−1

∂t

∂u

∂t
+

∂(θ−1Λ)

∂t

∂u̇

∂t
≤ 0. (7)GENERAL THEORYThe balan
e equations for the variable u,

ρu̇ = −∇ · q, (8)(ρ is the mass den
ity) relates the extra variables u̇ and q.Di�erentiating equation (8) with respe
t to time leads tothe balan
e equation for the variable u̇:
ρ
∂u̇

∂t
= −∇ · q̇, (9)where q̇ = ∂q/∂t. Using balan
e equations (8), (9), fromthe fundamental equation (5), we obtain the entropy bal-an
e equation:

ρ
∂s

∂t
= −∇·(θ−1q+θ−1Λq̇)+q·∇θ−1+q̇ ·∇(θ−1Λ). (10)We 
an see that equation (10) is written in the standardform

ρṡ = −∇ · Js + σ, (11)where
Js = θ−1q+ θ−1Λq̇ (12)is the entropy �ux,

σ = q · ∇θ−1 + q̇ · ∇(θ−1Λ) ≥ 0 (13)is the entropy sour
e. A

ording to the se
ond law of ther-modynami
s, the entropy produ
tion is non-negative. Ex-pression (13) shows that, to the heat �ux q, the thermody-nami
 for
e ∇θ−1 
orresponds, and to the time derivative
q̇, the thermodynami
 for
e ∇(θ−1Λ) 
orresponds.
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As in 
lassi
al irreversible thermodynami
s we 
onsidertotal entropy produ
tion
P =

∫

σ dV =

∫

[q · ∇θ−1 + q̇ · ∇(θ−1Λ)] dV, (14)where V is the volume of the system. A part of the timederivative of the entropy produ
tion, dXP/dt, has the form
dXP

dt
=

∫
[

q ·
∂

∂t
∇θ−1 + q̇ ·

∂

∂t
∇(θ−1Λ)

]

dV. (15)Let us transform (15) into
dXP

dt
= −

∫
[

∂θ−1

∂t
∇ · q+

∂(θ−1Λ)

∂t
∇ · q̇

]

dV + (16)
+

∮
[

∂θ−1

∂t
q+

∂(θ−1Λ)

∂t
q̇

]

· n dΣ,where n is a unit ve
tor dire
ted outside along the nor-mal to the surfa
e, dΣ is a surfa
e element. When time-independed boundary 
onditions take pla
e (θ and Λ aregiven), the surfa
e integral be
ones zero. Using equations(8), (9) and inequality (7), we obtain from (16) that
dXP

dt
=

∫

ρ

[

∂θ−1

∂t

∂u

∂t
+

∂(θ−1Λ)

∂t

∂u̇

∂t

]

dV ≤ 0 (17)Inequality (17) is extended evolution 
riterion, whi
h isgeneralization of the Glansdor�-Prigogine 
riterion.LINEAR THEORYTo a �rst approximation, the thermodynami
 for
es arelinearly related to the 
orresponding �uxes and �ux rates.Therefore, from expression (13), we have
∇θ−1 = R11q+R12q̇, (18)

∇(θ−1Λ) = R21q+R22q̇. (19)Thus, for a single irreversible pro
ess, we have obtainedtwo phenomenologi
al equations. A

ording to the Onsager-Casimir prin
iple, the matrix of the 
oe�
ients Rij is an-tisymmetri
, i.e.,
R12 = −R21. (20)Using phenomenologi
al equations (18) and (19), werepla
e the thermodynami
 for
es in expression (13) forthe entropy produ
tion and obtain expression

σ = R11q · q+R22q̇ · q̇ ≥ 0, (21)from whi
h it follows that the diagonal 
oe�
ients are pos-itive: R11 > 0, R22 > 0.Let us transform phenomenologi
al equation (18) in theform
R12

R11

∂q

∂t
+ q = −

1

R11θ2
∇θ, (22)and 
onsider Maxwell-Cattaneo law

τ
∂q

∂t
+ q = −λ∇T, (23)where T is the lo
al-equilibrium temperature, τ is the re-laxation time, λ is the thermal 
ondu
tivity. Comparing

equations (22) and Maxwell-Cattaneo law (23), we �nd theexpression for generalized temperature,
θ = T, (24)and relationship between the 
oe�
ients: R11 = 1/λT 2,

R12 = τ/λT 2.Howeve, if heat 
ondu
tion is governed by the dual-phase-lag equation,
τ
∂q

∂t
+ q = −λ

(

∇T + ε
∂∇T

∂t

)

, (25)then the 
omparison of the equation (22) with equation(25) gives a more 
omplex linear approximation for thegeneralized temperature:
θ = T + ε

∂T

∂t
. (26)Thus, in the propozed theory the generalized temperatureis de�ned by the form of the 
onstitutive equation.LAGRANGE MULTIPLIES METHODIn the previous se
tions the methods of 
lassi
al irre-versible thermodynami
s was used. Further let us 
onsidertools of the rational thermodynami
s, namely Lagrangemultiplies method proposed by Liu [10℄. We start fromthe entropy balan
e equation whi
h we write in the form

ρṡ+∇ · J = σ ≥ 0. (27)Apart from we suppose that entropy �ux and entropy pro-du
tion are fun
tions of the heat �ux q and heat �ux rate
q̇. So that 
onstitutive relations are

s = s(u, u̇), Js = Js(q, q̇), σ = σ(q, q̇). (28)Within this theory the 
onstrains are given by the energybalan
e equation and time derivative of the energy balan
eequation whi
h 
an be written in the form
ρu̇+∇ · q = 0, ρü+∇ · q̇ = 0. (29)Multipli
ation of the balan
e equations by Lagrangemultipliers λ1, λ2 and insertion this terms to the left-handside of the entropy inequality (27) give more general ex-pression:

ρṡ+∇ · Js − λ1(ρu̇+∇ · q)− λ2(ρü+∇ · q̇) ≥ 0. (30)Let us represent time derivative of u and divergen
e of Jsin the form
ṡ =

∂s

∂u
u̇+

∂s

∂u̇
ü, (31)

∇ · Js =
∂Js

∂q
: ∇q+

∂Js

∂q̇
: ∇q̇. (32)Using (31) let us make substitution in (30). After rear-rangement we obtain inequality

(

∂s

∂u
− λ1

)

ρu̇+

(

∂s

∂u̇
− λ2

)

ρü+

(

∂Js

∂q
− λ1U

)

: ∇q+(33)
+

(

∂Js

∂q̇
− λ2U

)

: ∇q̇ ≥ 0,
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where we used equalities
∇ · q = U : ∇q, ∇ · q̇ = U : ∇q̇. (34)Sin
e inequality (33) be
omes valid for 
ompletely arbi-trary variation of the values u̇, ü, ∇q, ∇q̇ (time derivativesof the independent variables u, u̇ and gradients of the �ux

q and �ux rate q̇), we have
∂s

∂u
− λ1 = 0,

∂s

∂u̇
− λ2 = 0, (35)

∂Js

∂q
− λ1U = 0,

∂Js

∂q̇
− λ2U = 0. (36)Further, let us de�ne generalized temperature θ and newintensive quantity Λ 
orresponding to variable u̇ by theequalities

λ1 = θ−1, λ2 = θ−1Λ. (37)The �rst supposition of the 
lassi
al approa
h is de�nitionsof the intensive quantities (4). Within proposed theory,based on the Lagrange multipliers methods, de�nitions ofthe generalized temperature θ and new intensive quantity
Λ (37) are last supposition.Then, (31), (35) and (37) lead to the expression for ṡ:

ṡ = θ−1u̇+ θ−1Λü. (38)We 
an see that Lagrange multipliers are fun
tions of uand u̇. From (36) we obtain that entropy �ux Js is linearfun
tion of q and q̇:
Js = θ−1q+ θ−1Λq̇. (12a)Entropy balan
e equation (27) and equalities (38), (12a)lead to expression for the entropy produ
tion:

σ = q · ∇θ−1 + q̇ · ∇(θ−1Λ) ≥ 0. (13a)Linear theory on the basis of the expression (13a) 
an beobtained as in the previous se
tion (see formulas (18)-(26)).Equations (38), (12a) and (13a) are �nal result of thegeneral theory. Using 
lassi
al approa
h, we started from

the fundamental equation (5) and obtained the entropybalan
e equation (11). Lagrange multipliers method per-mits us to obtain fundamental equation (38) from the en-tropy balan
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