
12th Joint European Thermodynamis ConfereneBresia, July 1-5, 2013ON THE LAGRANGE MULTIPLIERS METHOD IN EXTENDEDTHERMODYNAMICS OF IRREVERSIBLE PROCESSESS.I. SerdyukovDepartment of Chemistry, Mosow State University, 119992 Mosow, Russiaserdkv�teh.hem.msu.ruABSTRACTIn this paper we onsider extended thermodynami theory based on the postulate that entropy density is a funtionof the internal energy density and its time derivative. Using fundamental equation and the balane equation forthe internal energy density, we an write the entropy balane equation and obtain expressions for the entropy �uxand the entropy soure. Further we onsider tools of the rational thermodynamis, namely Lagrange multipliesmethod. We start from the entropy balane equation (entropy inequality) and suppose that entropy �ux andentropy prodution are funtions of the heat �ux and heat �ux rate. De�nitions of the generalized temperatureand new intensive quantity as funtions of the Lagrange multipliers lead to the fundamental equation (generalizedGibbs equation) and expliit expressions for the entropy �ux and entropy prodution.INTRODUCTIONConventional version of extended irreversible thermo-dynamis [1-5℄ is based on the postulate that entropy den-sity s is funtion of the dissipative �uxes. Let us onsiderthe heat ondution in a rigid isotropi body at rest with-out soure term. For the system under onsideration
s = s(u,q), (1)where u is the internal energy density, q the heat �ux. Inthis paper, we onsider extended thermodynami theory[6-9℄ based on the postulate that the entropy density sis a funtion of the internal energy density u and timederivative u̇:
s = s(u, u̇), (2)where u̇ = ∂u/∂t and t is the time. The total di�erentialof the entropy density has the form

ds =
∂s

∂u
du+

∂s

∂u̇
du̇. (3)Let us de�ne generalized temperature θ and new intensivequantity Λ in analogy with the lassial theory:

θ−1 =
∂s

∂u
, θ−1Λ =

∂s

∂u̇
, (4)where θ = θ(u, u̇) and Λ = Λ(u, u̇) depend on the addi-tional variable u̇. Then, the fundamental equation is givenby

θds = du + Λdu̇,and
∂s

∂t
= θ−1

∂u

∂t
+ θ−1Λ

∂u̇

∂t
. (5)The seond di�erential of the entropy density has theform

d2s = dθ−1 du+ d(θ−1Λ) du̇. (6)

Further, let us postulate the onvexity of s as funtion of
u and u̇. Then, we have inequality

∂θ−1

∂t

∂u

∂t
+

∂(θ−1Λ)

∂t

∂u̇

∂t
≤ 0. (7)GENERAL THEORYThe balane equations for the variable u,

ρu̇ = −∇ · q, (8)(ρ is the mass denity) relates the extra variables u̇ and q.Di�erentiating equation (8) with respet to time leads tothe balane equation for the variable u̇:
ρ
∂u̇

∂t
= −∇ · q̇, (9)where q̇ = ∂q/∂t. Using balane equations (8), (9), fromthe fundamental equation (5), we obtain the entropy bal-ane equation:

ρ
∂s

∂t
= −∇·(θ−1q+θ−1Λq̇)+q·∇θ−1+q̇ ·∇(θ−1Λ). (10)We an see that equation (10) is written in the standardform

ρṡ = −∇ · Js + σ, (11)where
Js = θ−1q+ θ−1Λq̇ (12)is the entropy �ux,

σ = q · ∇θ−1 + q̇ · ∇(θ−1Λ) ≥ 0 (13)is the entropy soure. Aording to the seond law of ther-modynamis, the entropy prodution is non-negative. Ex-pression (13) shows that, to the heat �ux q, the thermody-nami fore ∇θ−1 orresponds, and to the time derivative
q̇, the thermodynami fore ∇(θ−1Λ) orresponds.
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As in lassial irreversible thermodynamis we onsidertotal entropy prodution
P =

∫

σ dV =

∫

[q · ∇θ−1 + q̇ · ∇(θ−1Λ)] dV, (14)where V is the volume of the system. A part of the timederivative of the entropy prodution, dXP/dt, has the form
dXP

dt
=

∫
[

q ·
∂

∂t
∇θ−1 + q̇ ·

∂

∂t
∇(θ−1Λ)

]

dV. (15)Let us transform (15) into
dXP

dt
= −

∫
[

∂θ−1

∂t
∇ · q+

∂(θ−1Λ)

∂t
∇ · q̇

]

dV + (16)
+

∮
[

∂θ−1

∂t
q+

∂(θ−1Λ)

∂t
q̇

]

· n dΣ,where n is a unit vetor direted outside along the nor-mal to the surfae, dΣ is a surfae element. When time-independed boundary onditions take plae (θ and Λ aregiven), the surfae integral beones zero. Using equations(8), (9) and inequality (7), we obtain from (16) that
dXP

dt
=

∫

ρ

[

∂θ−1

∂t

∂u

∂t
+

∂(θ−1Λ)

∂t

∂u̇

∂t

]

dV ≤ 0 (17)Inequality (17) is extended evolution riterion, whih isgeneralization of the Glansdor�-Prigogine riterion.LINEAR THEORYTo a �rst approximation, the thermodynami fores arelinearly related to the orresponding �uxes and �ux rates.Therefore, from expression (13), we have
∇θ−1 = R11q+R12q̇, (18)

∇(θ−1Λ) = R21q+R22q̇. (19)Thus, for a single irreversible proess, we have obtainedtwo phenomenologial equations. Aording to the Onsager-Casimir priniple, the matrix of the oe�ients Rij is an-tisymmetri, i.e.,
R12 = −R21. (20)Using phenomenologial equations (18) and (19), wereplae the thermodynami fores in expression (13) forthe entropy prodution and obtain expression

σ = R11q · q+R22q̇ · q̇ ≥ 0, (21)from whih it follows that the diagonal oe�ients are pos-itive: R11 > 0, R22 > 0.Let us transform phenomenologial equation (18) in theform
R12

R11

∂q

∂t
+ q = −

1

R11θ2
∇θ, (22)and onsider Maxwell-Cattaneo law

τ
∂q

∂t
+ q = −λ∇T, (23)where T is the loal-equilibrium temperature, τ is the re-laxation time, λ is the thermal ondutivity. Comparing

equations (22) and Maxwell-Cattaneo law (23), we �nd theexpression for generalized temperature,
θ = T, (24)and relationship between the oe�ients: R11 = 1/λT 2,

R12 = τ/λT 2.Howeve, if heat ondution is governed by the dual-phase-lag equation,
τ
∂q

∂t
+ q = −λ

(

∇T + ε
∂∇T

∂t

)

, (25)then the omparison of the equation (22) with equation(25) gives a more omplex linear approximation for thegeneralized temperature:
θ = T + ε

∂T

∂t
. (26)Thus, in the propozed theory the generalized temperatureis de�ned by the form of the onstitutive equation.LAGRANGE MULTIPLIES METHODIn the previous setions the methods of lassial irre-versible thermodynamis was used. Further let us onsidertools of the rational thermodynamis, namely Lagrangemultiplies method proposed by Liu [10℄. We start fromthe entropy balane equation whih we write in the form

ρṡ+∇ · J = σ ≥ 0. (27)Apart from we suppose that entropy �ux and entropy pro-dution are funtions of the heat �ux q and heat �ux rate
q̇. So that onstitutive relations are

s = s(u, u̇), Js = Js(q, q̇), σ = σ(q, q̇). (28)Within this theory the onstrains are given by the energybalane equation and time derivative of the energy balaneequation whih an be written in the form
ρu̇+∇ · q = 0, ρü+∇ · q̇ = 0. (29)Multipliation of the balane equations by Lagrangemultipliers λ1, λ2 and insertion this terms to the left-handside of the entropy inequality (27) give more general ex-pression:

ρṡ+∇ · Js − λ1(ρu̇+∇ · q)− λ2(ρü+∇ · q̇) ≥ 0. (30)Let us represent time derivative of u and divergene of Jsin the form
ṡ =

∂s

∂u
u̇+

∂s

∂u̇
ü, (31)

∇ · Js =
∂Js

∂q
: ∇q+

∂Js

∂q̇
: ∇q̇. (32)Using (31) let us make substitution in (30). After rear-rangement we obtain inequality

(

∂s

∂u
− λ1

)

ρu̇+

(

∂s

∂u̇
− λ2

)

ρü+

(

∂Js

∂q
− λ1U

)

: ∇q+(33)
+

(

∂Js

∂q̇
− λ2U

)

: ∇q̇ ≥ 0,
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where we used equalities
∇ · q = U : ∇q, ∇ · q̇ = U : ∇q̇. (34)Sine inequality (33) beomes valid for ompletely arbi-trary variation of the values u̇, ü, ∇q, ∇q̇ (time derivativesof the independent variables u, u̇ and gradients of the �ux

q and �ux rate q̇), we have
∂s

∂u
− λ1 = 0,

∂s

∂u̇
− λ2 = 0, (35)

∂Js

∂q
− λ1U = 0,

∂Js

∂q̇
− λ2U = 0. (36)Further, let us de�ne generalized temperature θ and newintensive quantity Λ orresponding to variable u̇ by theequalities

λ1 = θ−1, λ2 = θ−1Λ. (37)The �rst supposition of the lassial approah is de�nitionsof the intensive quantities (4). Within proposed theory,based on the Lagrange multipliers methods, de�nitions ofthe generalized temperature θ and new intensive quantity
Λ (37) are last supposition.Then, (31), (35) and (37) lead to the expression for ṡ:

ṡ = θ−1u̇+ θ−1Λü. (38)We an see that Lagrange multipliers are funtions of uand u̇. From (36) we obtain that entropy �ux Js is linearfuntion of q and q̇:
Js = θ−1q+ θ−1Λq̇. (12a)Entropy balane equation (27) and equalities (38), (12a)lead to expression for the entropy prodution:

σ = q · ∇θ−1 + q̇ · ∇(θ−1Λ) ≥ 0. (13a)Linear theory on the basis of the expression (13a) an beobtained as in the previous setion (see formulas (18)-(26)).Equations (38), (12a) and (13a) are �nal result of thegeneral theory. Using lassial approah, we started from
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