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ABSTRACT

In this paper we consider extended thermodynamic theory based on the postulate that entropy density is a function
of the internal energy density and its time derivative. Using fundamental equation and the balance equation for

the internal energy density, we can write the entropy balance equation and obtain expressions for the entropy flux

and the entropy source. Further we consider tools of the rational thermodynamics, namely Lagrange multiplies

method. We start from the entropy balance equation (entropy inequality) and suppose that entropy flux and
entropy production are functions of the heat flux and heat flux rate. Definitions of the generalized temperature

and new intensive quantity as functions of the Lagrange multipliers lead to the fundamental equation (generalized

Gibbs equation) and explicit expressions for the entropy flux and entropy production.

INTRODUCTION

Conventional version of extended irreversible thermo-
dynamics [1-5] is based on the postulate that entropy den-
sity s is function of the dissipative fluxes. Let us consider
the heat conduction in a rigid isotropic body at rest with-
out source term. For the system under consideration

(1)

where u is the internal energy density, q the heat flux. In
this paper, we consider extended thermodynamic theory
[6-9] based on the postulate that the entropy density s
is a function of the internal energy density u and time
derivative :

(2)

The total differential

s = s(u, q),

s = s(u,u),

where & = Ou/0t and t is the time.
of the entropy density has the form

(3)

Let us define generalized temperature € and new intensive
quantity A in analogy with the classical theory:
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where 6 = 0(u, %) and A = A(u, %) depend on the addi-

tional variable ©. Then, the fundamental equation is given
by

071

Ods = du + Adu,
and 9 5 Y
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The second differential of the entropy density has the
form
d*s =do~" du+d(0~ " A) di. (6)
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Further, let us postulate the convexity of s as function of
u and %. Then, we have inequality

00~ u _ 9(6='A) du

— <0.
ot ot ot 0

ot —

(7)

GENERAL THEORY

The balance equations for the variable u,

=-V. q, (8)

(p is the mass dencity) relates the extra variables 4 and q.
Differentiating equation (8) with respect to time leads to
the balance equation for the variable u:

ou
PE (9)

where q = dq/0t. Using balance equations (8), (9), from
the fundamental equation (5), we obtain the entropy bal-
ance equation:

ds

P or

We can see that equation (10) is written in the standard
form

oyt

:_an

~V- (0" q+07 AG)+q- VO +¢- V(07 A). (10)

ps=—-V-J° +o, (11)
where
J=0"'q+0'Aq (12)
is the entropy flux,
c=q-VO ' +q-V@'A)>0 (13)

is the entropy source. According to the second law of ther-
modynamics, the entropy production is non-negative. Ex-
pression (13) shows that, to the heat flux q, the thermody-
namic force VO~ corresponds, and to the time derivative
q, the thermodynamic force V(#~!A) corresponds.



As in classical irreversible thermodynamics we consider
total entropy production

P:/odV:/[q-Vﬁ’l—|—('1-V(9’1A)]dV, (14)

where V' is the volume of the system. A part of the time
derivative of the entropy production, dx P/dt, has the form

0

ot

dXP_/
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Let us transform (15) into

VOt +q- QV(H‘lA)} dv.  (15)

ot

dxP 00~1 (0~ A .
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00~1 O(0~1A) 1o
+j{[ En q+ B q]-ndE,

where n is a unit vector directed outside along the nor-
mal to the surface, d¥ is a surface element. When time-
independed boundary conditions take place (f and A are
given), the surface integral becones zero. Using equations
(8), (9) and inequality (7), we obtain from (16) that

96~ du
ot ot

@Pi/
a ) r

Inequality (17) is extended evolution criterion, which is
generalization of the Glansdorff-Prigogine criterion.

A(O~1A)
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(17)

LINEAR THEORY

To a first approximation, the thermodynamic forces are
linearly related to the corresponding fluxes and flux rates.
Therefore, from expression (13), we have

V6! = Ri1q + Ri24, (18)
V(0~'A) = Ro1q + Raad. (19)

Thus, for a single irreversible process, we have obtained

two phenomenological equations. According to the Onsager-

Casimir principle, the matrix of the coefficients R;; is an-
tisymmetric, i.e.,

Ris = —Ro1. (20)

Using phenomenological equations (18) and (19), we
replace the thermodynamic forces in expression (13) for
the entropy production and obtain expression

o =Ri1q-q+ R2q-q>0, (21)
from which it follows that the diagonal coefficients are pos-
itive: Ry > 0, Ry > 0.

Let us transform phenomenological equation (18) in the

form

R12 8q 1
— =-———2Vb, 22
R Ot R0 (22)
and consider Maxwell-Cattaneo law
oq
—= = -\VT 2
T5 td VT, (23)

where T is the local-equilibrium temperature, 7 is the re-
laxation time, A is the thermal conductivity. Comparing
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equations (22) and Maxwell-Cattaneo law (23), we find the
expression for generalized temperature,

0="T, (24)

and relationship between the coefficients: Riq 1/AT?,
R12 = T//\T2.
Howeve, if heat conduction is governed by the dual-

phase-lag equation,

ovT
+q— —A (VT'FEW)a

9q

b 25
™o (25)
then the comparison of the equation (22) with equation
(25) gives a more complex linear approximation for the
generalized temperature:

T
0:T+sa—.

e (26)

Thus, in the propozed theory the generalized temperature
is defined by the form of the constitutive equation.

LAGRANGE MULTIPLIES METHOD

In the previous sections the methods of classical irre-
versible thermodynamics was used. Further let us consider
tools of the rational thermodynamics, namely Lagrange
multiplies method proposed by Liu [10]. We start from
the entropy balance equation which we write in the form

ps+V-J=02>0. (27)
Apart from we suppose that entropy flux and entropy pro-
duction are functions of the heat flux q and heat flux rate
4. So that constitutive relations are
J° =J%(q,9), (28)

s = s(u,w), oc=o0(q,q).

Within this theory the constrains are given by the energy
balance equation and time derivative of the energy balance
equation which can be written in the form
pu+V-q=0, pi+V.-q=0. (29)
Multiplication of the balance equations by Lagrange
multipliers A1, A2 and insertion this terms to the left-hand
side of the entropy inequality (27) give more general ex-
pression:
ps+ VI = M(pt+V-q) — Aa(pii+V-q)>0. (30)

Let us represent time derivative of v and divergence of J*
in the form

._Os.  Os.
oJ* oJ*
JP == . - . of 2
v-J aq Vq+ 94 Vq (32)

Using (31) let us make substitution in (30). After rear-
rangement we obtain inequality

ds ) ds . 0J*
(33)
n <8J. —AQU) LV >0,
09



where we used equalities

V-q=U:Vq, V-q=U:Vq. (34)

Since inequality (33) becomes valid for completely arbi-
trary variation of the values %, i, Vq, Vq (time derivatives
of the independent variables u, @ and gradients of the flux

q and flux rate q), we have

Os Os

%—/\120, %—AQZO, (35)
0J° 0J°
- AMU=0, — —-XU=0.
aq 1 ' g 2 (36)

Further, let us define generalized temperature 6 and new
intensive quantity A corresponding to variable % by the
equalities

Ay = 6~ tA.

A =071 (37)

The first supposition of the classical approach is definitions
of the intensive quantities (4). Within proposed theory,
based on the Lagrange multipliers methods, definitions of
the generalized temperature 6 and new intensive quantity
A (37) are last supposition.
Then, (31), (35) and (37) lead to the expression for §:
$=0"1u+ 0 A, (38)
We can see that Lagrange multipliers are functions of u
and . From (36) we obtain that entropy flux J® is linear
function of q and q:
JP=0""q+ 0" Aq. (12a)
Entropy balance equation (27) and equalities (38), (12a)
lead to expression for the entropy production:
oc=q-VO0 ' +q- V(O A >0. (13a)
Linear theory on the basis of the expression (13a) can be
obtained as in the previous section (see formulas (18)-(26)).
Equations (38), (12a) and (13a) are final result of the
general theory. Using classical approach, we started from
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the fundamental equation (5) and obtained the entropy
balance equation (11). Lagrange multipliers method per-
mits us to obtain fundamental equation (38) from the en-
tropy balance equation (27).
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