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ABSTRACT

In the classical experiment of Joule and Thomson, a gas passes through a porous plug. The pressure difference between the

upstream and the downstream side of the porous plug causes a temperature difference. Here, the flow process is described for

the case that the fluid may condense, and the pressure loss is caused by a thin capillary. The process is calculated assuming local

thermodynamic equilibrium and one-dimensional temperature and pressure distributions, respectively.

A vapor far from saturation does not condense, and the temperature and pressure distribution for the common Joule-Thomson

process is recovered. A vapor close enough to saturation may condense partially or completely, and a liquid or a two-phase

mixture flows through a part of the capillary. The thermodynamic path of the fluid is presented in temperature-entropy and

pressure-temperature diagrams.

INTRODUCTION

In an adiabatic throttling or Joule-Thomson process, the con-

tribution of the kinetic energy to the energy balance is negligi-

ble. The enthalpies of the fluid are the same upstream and down-

stream of the region where a pressure loss occurs. For gases,

the Joule-Thomson coefficient, i.e., the change of temperature

with respect to pressure at constant enthalpy, µJT = (∂T/∂ p)h,

may be positive or negative. Vapors, i.e., fluids in a gaseous

state below the critical temperature, always have a positive

Joule-Thomson coefficient. Hence, a vapor undergoing a Joule-

Thomson process always has a downstream temperature which

is smaller than the upstream temperature.

The temperature difference causes the transport of heat, usu-

ally by conduction, in downstream direction. However, a vapor

at or close to saturation upstream of the tube may not be able

to release a sufficient amount of heat by cooling down. Instead,

the vapor must condense, either partially or completely. The

heat released by condensation is consumed further downstream

by evaporation of the partially or fully condensed fluid.

The temperature field of the flow through a long, thin cap-

illary may be approximated by a one-dimensional temperature

distribution, and a one-dimensional description of the flow be-

comes possible. A one-dimensional description is also applica-

ble to the flow through a porous medium, if the porous medium

is modeled as a bundle of equivalent capillaries. Hence, results

obtained for the flow through a porous medium may also be ap-

plied to the flow of a fluid through a capillary.

Schneider [1] described the one-dimensional flow of a fluid

that is in an upstream state of a saturated vapor through a porous

medium. Schneider did not account for effects of capillarity,

such as capillary condensation or the pressure difference across

curved menisci, but assumed that phase changes occur at plane

interfaces. He observed that, due to the Joule-Thomson effect, a

saturated vapor that flows through a porous medium must con-

dense.

A critical permeability was given for the porous medium.

With respect to the flow through a capillary, this is equivalent

to a critical radius. For a radius of the capillary below the crit-

ical value, the vapor condenses completely. For a radius of the

capillary larger than the critical radius, the fluid condenses par-

tially, and a two-phase mixture flows through a part of the cap-

illary. The value of the critical radius depends on the properties

of the fluid and on the thermal conductivity in the flow region.

For common substances, the critical radius is of the order of

10 nm. The critical radius may be much larger for very good

heat conductors.

The, usually, very small value of the critical radius may be

the reason that the Joule-Thomson effect did not receive much

attention under conditions where phase changes occur. Con-

fer, for instance, the remark of Tien [2], who stated, with re-

spect to the flow of vapors through porous media, that ‘Another

basic thermodynamic phenomenon that my play an interesting

role in heat-pipe performance under certain conditions has never

been mentioned or analyzed in the literature. This is the Joule-

Thomson effect of real gas flow.’

Capillary effects, which dominate the flow, were investigated

more thoroughly. Rhim and Hwang [3] investigated the flow of

vapors near saturation through porous Vycor glass. They did not

account for the Joule-Thomson effect, but for capillary conden-

sation, adsorption and the large capillary pressure across curved

interfaces between the liquid and the vapor phase. They found

that the mass flow of a fluid under conditions where condensa-

tion occurs is greatly enhanced with respect to the mass flow of a

vapor that does not condense. They also observed that, because

a large amount of heat is evolved due to condensation and evap-

oration within the porous medium, the fluid can not stay isother-

mal. However, later, in their seminal work Lee and Hwang [4]

described the flow of a vapor through a porous medium as an

isothermal process.

Based on the approach of Schneider [1], the Joule-Thomson

process of a vapor was analyzed, including also the effects of
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Figure 1. Sketch of the flow.

capillarity [5; 6]. A modified expression for the critical per-

meability [6] or for the critical radius of a capillary [7] was

given. It was found that the mass flow rates calculated by ap-

plying an isothermal description were an order of magnitude

larger than the mass flow rates calculated from an adiabatic,

non-isothermal description [8]. Experimentally measured mass

flow rates were still smaller than those obtained from the adia-

batic description [8].

These results suggest that capillary forces may dominate the

flow. However, in turn, the capillary forces are notably influ-

enced by the small variation due to the Joule-Thomson effect.

Consider a situation where a liquid plug is located inside a cap-

illary. At both ends of the liquid plug curved interfaces are

formed. The pressure differences across the curved interfaces

are large, and large forces are exerted on the liquid on both ends

of the liquid plug. However, because these forces act in op-

posite directions, they sum up to zero. If the thermodynamic

equilibrium at one end of the plug changes, e.g., by heating up

one end, a large force equal to the difference of the capillary

forces remains and acts on the liquid plug. This perception is

somehow supported by the observation that, over a wide range

of contact angles, the mass flow rate is independent of the con-

tact angle [7].

The states of a fluid that flows through a small capillary, with

and without phase changes, are presented further below.

THEORETICAL DESCRIPTION

The flow configuration is sketched in Fig. 1. A vapor is in

a state p1, T1 upstream of the end of a tube. The pressure p2

downstream of the tube is smaller than the pressure at the up-

stream side, p2 < p1. Due to the Joule-Thomson effect, the

temperature T2 at the downstream side is also smaller than the

temperature T1 upstream of the tube. The length of the capil-

lary is L, which is large compared to the inner diameter 2r. The

walls of the tube contribute to the heat transfer in longitudinal

direction. However, there is no heat transfer in radial direc-

tion, which can be achieved either by isolating the tube adiabat-

ically against the surrounding or by placing a large number of

the same tubes in parallel.

Governing equations

The flow is governed by the balances of mass, momentum

and energy,

ṁ = constant, (1)

ṁ =− r4π

8ν

dp

dz
, (2)

ṁh+ r2
π q̇/ε = constant. (3)

Here, ṁ denotes the mass flow rate, ν refers to the viscosity of

the fluid, p is the pressure, z the spatial coordinate, h refers to

the specific enthalpy of the fluid and q̇ denotes the heat flux. The

ratio of the inner to the outer cross-sectional area of the tube is

given by ε . The Reynolds-number is small, hence the law of

Hagen-Poiseuille is applied, Eq. (2). The heat flux is given by

Fourier’s law of heat conduction,

q̇ =−kmf

dT

dz
, (4)

where T is the absolute temperature and kmf is the effective ther-

mal conductivity of the fluid-filled tube,

kmf = (1− ε)km + εkf. (5)

Here, km and kf refer to the thermal conductivities of the solid

tube material and the fluid, respectively.

Two-phase flow within the membrane is modeled as homo-

geneous flow,

x =
αv2ph

vg

, ẋ = x, (6)

v2ph =

(
1−α

vl

+
α

vg

)−1

. (7)

Here, x and ẋ are the mass fraction and the mass flow fraction

of the vapor, respectively, α is the vapor volume fraction and

vl, vg and v2ph refer to the specific volumes of the liquid phase,

the gaseous phase and the two-phase mixture of the fluid, re-

spectively. The effective kinematic viscosity and the effective

thermal conductivity of the two-phase mixture, ν2ph and k2ph,

are given by

ν2ph = (αµg +(1−α)µl)v2ph, (8)

k2ph = αkg +(1−α)kl. (9)

Here, µg and µl refer to the dynamic viscosities and kg and kl to

the thermal conductivities of the gaseous and the liquid phase,

respectively.

At interfaces between the liquid and the gaseous phase of

the fluid within the tube, the pressure difference is given by the

Young-Laplace equation,

pcap =
2σ cosθ

r
, (10)

where σ refers to the surface tension and θ is the contact angle.

The pressure of the vapor phase of the fluid at a front of phase

change, pK, is given by Kelvin’s equation,

ln

(
pK

psat

)
=−2σ cosθ

r

vl

RT
. (11)

Here, psat is the saturation pressure at a plane interface and

R refers to the specific gas constant. Within the tube, a

phase change occurs if the pressure of a vapor rises to p =
pK(T ), or if the pressure in the liquid falls below p = pK(T )−
2σ(T )cosθ/r. With respect to the condition at a plane in-

terface, the pressures at a curved interface are different in the
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gaseous and the liquid phase. On both sides of the interface

work is done on the fluids to bring them from their states at a

plane interface to their respective states at a curved interface.

These works must be added to the enthalpy of vaporization at a

plane interface. Therefore, the specific enthalpy of vaporization

at fronts of phase change within the porous membrane, hvap,K,

is given by

∆hvap,K = ∆hvap +(pK− psat)

×
((

∂hg

∂ p

)
T

−
(

∂hl

∂ p

)
T

)
+

(
∂hl

∂ p

)
T

2σ cosθ

r
. (12)

Here, ∆hvap is the specific enthalpy of vaporization at a plane in-

terface and hl and hg denote the specific enthalpies of the liquid

and the gaseous phase, respectively.

For the flow of a single phase of a fluid, Eqs. (1) to (3) and (4)

yield, together with, e.g., initial conditions for ṁ, ṁh+ q̇, T

and p, a well-posed initial value problem for the variables T

and p in dependence of z. For two-phase flow, pressure and

temperature are not independent of each other. Instead, two

independent variables are, e.g., T and α , and the dependence

between T and p must be formulated. To determine the gra-

dient (dp/dT )2ph in a two-phase region in dependence of T

and α , the marginal cases of α → 1 and α → 0 are consid-

ered. The first case is equivalent to the state of a vapor that

is in equilibrium with its liquid phase at a curved meniscus,

hence, (dp/dT )α→1 = dpK/dT . The second case is equiva-

lent to the state of the liquid at the other side of the menis-

cus, (dp/dT )α→0 = d(pK−2σ cosθ/r)/dT . For homogeneous

two-phase flow the pressure gradient is put as the volume-

averaged mean of the pressures in the liquid and the gaseous

phases, respectively,

(
dp

dT

)
2ph

=
dpK

dT
− (1−α)

2cosθ

r

dσ

dT
. (13)

The boundary conditions complete the governing system of

equations. They are

T = T1, p = p1, q̇ = 0 at z→−∞, (14)

p = p2, q̇ = 0 at z = L. (15)

The system of governing equations is solved numerically.

A shooting method is used to solve the boundary value prob-

lem. First, the downstream state of the fluid is completely de-

termined. With h2 = h1, the downstream temperature T2 is cal-

culated by integration along an isenthalpic line,

T2 = T1 +

p2∫
p1

(
∂T

∂ p

)
h

dp. (16)

Applying the initial conditions T = T2, p = p2 and q̇ = 0 at

z = L, the governing equations are integrated in negative z-

direction. Integration is iteratively repeated, each time chang-

ing the value of ṁ, until the condition p(z = 0) = p1 is fulfilled

within a tolerance of (p1− p2)/1000.
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Figure 2. Temperature distribution in a Joule-Thomson process of a

vapor without phase change. The tube extends from z/L = 0 to z/L = 1.

RESULTS

Results are presented for the flow of butane through a glass

capillary. The thickness of the wall is half the inner radius,

hence ε = 0.44. The thermal conductivity of glass is 0.5 W/m K.

At a temperature of 300 K, the saturation pressure of butane

is psat(300 K) = 2.57 bar. For a vapor that does not con-

dense, the temperature-entropy and the pressure-temperature di-

agram is shown in Fig. 3. In this case, the upstream pressure is

p1 = 2.1 bar and the downstream pressure is p2 = 0.5 bar. The

vapor cools down isobarically in front of the tube. Within the

tube, the vapor expands nearly isothermally until it reaches the

downstream pressure p2. Figure 2 shows the temperature distri-

bution. The vapor expands nearly isothermally within the tube

because the thermal conductivity of the tube material is much

larger than the thermal conductivity of the vapor, 0.5 W/m K vs.

0.016 W/m K.

The path of the process in the temperature-entropy diagram

in Fig. 3 shows that, even though the upstream state 1 and the

downstream state 2 are both unsaturated vapors, condensation

must occur if the path of the process crosses the line p = pK.

The line p = pK is depicted as a dotted line close to the line

of saturated vapor in the T -s diagram. In the p-T diagram, the

dashed line refers to p = pK.

The states of a fluid when partial condensation occurs are

shown in Fig. 4. With respect to the case shown in Fig. 3, the

only condition which is changed is the upstream pressure, from

p1 = 2.1 to p1 = 2.3 bar. The two-phase mixture that flows

through a part of the tube has a vapor mass fraction and also a

liquid mass fraction of order unity. Hence, because the density

of the liquid phase of the fluid is much larger than the density of

the vapor phase, the volume fraction of the vapor is very close to

one. The p-T diagram shows that the pressure in the two-phase

mixture within the tube is close to pK, the pressure of a vapor in

the tube.
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Figure 3. Joule-Thomson process of a vapor without phase change. States of the fluid in a temperature-entropy and a pressure-temperature diagram.
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Figure 4. States of the fluid when partial condensation occurs. Temperature-entropy and pressure-temperature diagram. For remaining legend labels,

see Fig. 3.

NOMENCLATURE

h Specific enthalpy [J/kg]

k Thermal conductivity [W/m K]

ṁ Mass flow rate [kg/s]

p Pressure [Pa]

q̇ Heat flux [W/m2

R Specific gas constant [J/kg K]

r Radius [m]

T Absolute temperature [K]

v Specific volume [m3/kg]

x Vapor mass fraction

ẋ Vapor mass flow fraction

z Spatial coordinate [m]

α Greek letters to follow

α Vapor volume fraction [-]

ε Void fraction [-]

θ Contact angle [-]

µ Dynamic viscosity [Pa s]

ν Kinematic viscosity [m2/s]

σ Surface tension [N/m]

Subscripts

0 Reference state

1 Upstream state

2 Downstream state

2ph Two-phase

cap Capillary pressure, cf. Eq. (10)

f Fluid

g Gaseous

l Liquid

K Vapor pressure at a curved interface, cf. Eq.(11)

m Solid material

sat Saturation pressure
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