EFFECTS OF THE TIME DELAYS IN AN ENDOREVERSIBLE AND NONENDOREVERSIBLE THERMAL ENGINES WORKING AT DIFFERENT REGIMES

Páez-Hernández R.*, Portillo-Díaz P.*, Ladino-Luna D.*

*Área de Física de Procesos Irreversibles, *Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo No. 180 Col. Reynosa Tamps. CP02200 MÉXICO
Corresponding Author: phrt@correo.azc.uam.mx

ABSTRACT

In this work we analyze engine implicit time delays of an endoreversible Curzon-Ahlborn engine using a van der Waals gas working at maximum power regime, we obtain relaxation times, and system phase portrait. When comparing the phase portrait with an endoreversible Curzon-Ahlborn engine using a van de Waals gas working at ecological regime, we observe that eigenvectors have a counter clockwise rotation, as can be seen in the corresponding phase portrait. We find that the total time delay does not destabilize the system steady-state, regardless of this length, and thus it does not seem to play a role in the dynamic-thermodynamic properties trade-off. This result is in accordance with previous studies of endoreversible and non-endoreversible Curzon-Ahlborn engines. Finally we can conclude that it is a fact that the engine dynamic properties are different when the work regimes and working substance change.

INTRODUCTION

TIME DELAYS

In real life situations when the value of a variable is modified, the effect in the dynamic response of the system is not observed immediately. A certain time must elapse until the system begins to respond or "feel" the effect of the changes made. Suppose we modify the concentration of a reactor feed. Our experience and common sense tell us that time passes until the variables that characterize the dynamic behavior of the reactor (e.g. concentration) begin to modify its value relative to their pre-change. These systems are known as dynamical systems. Delayed systems appear naturally in Medicine, Biology and Engineering. These systems have been studied before the last century. Studies in Medicine and Biology begin with Ross’ epidemiology models (1911) and others in the early twentieth century, which were studied by Lotka, Volterra and Kostitzin [13]. A distinctive feature of these systems is that their rate of evolution is described by differential equations that include information about the history of the system. The effects of delays are of great interest, since their presence may include complex behavior (oscillations, instability, bad system performance). Páez-Hernández et al [14] studied the effect time delays produced in a mathematical model for the stretch reflex regulatory pathway. Guzmán-Vargas et al [15] studied time-delay effects on dynamics of a two-actor conflict model.

FIXED POINT AND LINEARIZED SYSTEM WITH DELAYS

Consider a dynamic system which has a single variable with time delays τ.

504
where subscript ξ is a time delay variable. Following step by step Strogatz [16] to obtain a linear system,

\[
\dot{u} = f(x^* + u, y^* + v_\xi), \quad \dot{v} = g(x^* + u, y^* + v),
\]

(2)

where u and v represent a small perturbation of the system and (x^*, y^*) is a fixed point, now we do a Taylor series expansion to Eq. (2) and we consider negligible the terms of two onward, and evaluate the steady-state and we obtain

\[
\dot{u} = \frac{df}{dx}(x^*, y^*) \dot{x} + \frac{df}{dy}(x^*, y^*) \dot{y},
\]

(3)

\[
\dot{\xi} = \frac{dg}{dx}(x^*, y^*) \dot{x} + \frac{dg}{dy}(x^*, y^*) \dot{y}.
\]

(4)

Now we assume that u and v are of the form

\[
u = A_1 e^{\lambda t},
\]

(5)

\[
u_\xi = A_1 e^{\lambda t} e^{-2\lambda \xi}
\]

(6)

\[
u = A_2 e^{\lambda t},
\]

(7)

\[
u_\xi = A_2 e^{\lambda t} e^{-2\lambda \xi},
\]

(8)

where λ is a complex number, A_1 and A_2 are constant.

Substituting (5)-(8) in (3) and (4) leads to the following set of homogeneous linear system for A_1 and A_2:

\[
(f_x - \lambda) A_1 + f_y e^{-2\lambda \xi} A_2 = 0
\]

(9)

\[
f_x e^{-2\lambda \xi} A_1 + (g_y - \lambda) A_2 = 0.
\]

(10)

This system of equations has non-trivial solutions only if the determinant of the matrix of coefficients equals zero, i.e.

\[
(f_x - \lambda)(g_y - \lambda) - f_\xi g_\xi e^{-2\lambda \xi} = 0.
\]

(11)

This equation is also called the transcendental characteristic equation, and can be written as

\[
H(z) + K(z) e^{-2\lambda \xi} = 0,
\]

(12)

with z an eigenvalue, and $H(z)$ and $K(z)$ are polynomials of second and zero order, respectively.

The solutions to this equation are not obvious because has an infinite number of roots [13]. One way to overcome this situation is to consider the fact a common effect of time delays is to destabilize stable fixed points or to stabilize unstable fixed points by sustained oscillations. If we assume that $z = i\omega$, and substitute in (12), we obtain a complex variable equation.

\[
P(\omega) + iQ(\omega) = e^{-i\omega \xi}
\]

(13)

where $P(\omega)$ and $Q(\omega)$ are second and first order polynomials, respectively. We observe that the right hand side of this equation represents the unitary circle whereas the left hand side describes a parabola. The intersection of these two curves could represent a change in the stability of the system. The analysis of intersection between the parabola and the unitary circle leads to the following classification:

- a. If the parabola does not intersect the unitary circle, and the system is stable to $\xi = 0$, then the system is stable and independent of delay.

- b. If the system is stable for $\xi = 0$ and the parabola intersects the unit circle, then the system can be affected by delays.

THE STEADY-STATE CURZON-AHLBORN ENGINE USING A VAN DER WAALS GAS AS WORKING SUBSTANCE

Consider the endoreversible CA heat engine (Figure 1). This engine works between the heat reservoirs T_1 and T_2 ($T_1 > T_2$). The working temperatures at steady state are \bar{x} and \bar{y}, where $\bar{x} > \bar{y} > T_2$. Heat flows from T_1 to \bar{x} and from \bar{y} to T_2 through thermal resistances, with a thermal conductance denoted by α.

![Figure 1: Schematic representation of a CA engine which consists of a Carnot engine (Ca) and the heat reservoirs T_1 and T_2. The heat exchanges J_1 and J_2 take place through both thermal conductors with the same conductance.](image)

Using the endoreversibility hypothesis, an engine working between the reservoir \bar{x} and \bar{y} acts like a Carnot engine, although it works in finite time cycles, i.e.

\[
\bar{J}_1 = \frac{\bar{x}}{\bar{x} - \bar{y}} \bar{P}
\]

(14)

and

\[
\bar{J}_2 = \frac{\bar{y}}{\bar{x} - \bar{y}} \bar{P}
\]

(15)

\bar{J}_1 and \bar{J}_2 are the steady-state heat flows from \bar{x} to the engine, and from the engine to \bar{y} respectively. \bar{P} is the engine power output.

The CA engine works usually in steady state, so that the heat flux from T_1 to \bar{x} is \bar{J}_1, and the heat flux from \bar{y} to T_2 is \bar{J}_2.

\[
\bar{J}_1 = \alpha(T_1 - \bar{x})
\]

(16)

and

\[
\bar{J}_2 = \alpha(\bar{y} - T_2)
\]

(17)

From equations (14)–(17), and from the definition of efficiency given as,
\[\bar{\eta} = \frac{\bar{P}}{\bar{H}} . \quad (18) \]

it follows that
\[\bar{x} = \frac{T_1}{2} \left(1 + \frac{T_2/T_1}{1-\bar{\eta}} \right) . \quad (19) \]
\[\bar{y} = \frac{T_2}{2} \left(1 - \bar{\eta} \right) \left(1 + \frac{T_2/T_1}{1-\bar{\eta}} \right) . \quad (20) \]

The efficiency of a Curzon-Ahlborn engine working at maximum power output using a van der Waals gas as working substance \(\eta_{vW} \), was found by Ladino-Luna [17] and it is given as,
\[\eta_{vW} = 1 - \left\{ \sqrt{\tau} + 1/2 \left(1 - \sqrt{\tau} \right)^2 \lambda_{vW} + \frac{1}{4} \left(1 - \sqrt{\tau} \right)^2 \frac{(1-\sqrt{\tau})^2}{2\sqrt{\tau}} \ln \tau \lambda_{vW}^2 + O(\lambda_{vW}^3) \right\} . \quad (21) \]

with: \(\tau = T_2/T_1 \), and
\[\lambda_{vW} = \frac{1}{\sqrt{\sqrt{\tau} \left[\frac{v_{\text{max}} - b}{v_{\text{min}} - b} \right]^{-1}} , \quad (22) \]
where \(b \) is a constant which depends on the gas, \(\gamma \) is the ratio of the constant-pressure and constant-volume heat capacities \(\gamma = C_p/C_v \), \(v_{\text{max}} \) and \(v_{\text{min}} \) are the subtended volumes maximum and minimum respectively by the gas in a cycle. Now if we consider that \(b \) is smaller than \(v_{\text{max}} \) and \(v_{\text{min}} \), table 13.1 [18], then the ratio \((v_{\text{max}} - b)/(v_{\text{min}} - b) \) is approximately \(v_{\text{max}}/v_{\text{min}} \), this ratio is called volumetric compression ratio \(\tau_{c} \). For Diesel cycle the typical values are 12-15, table 10.1 [19], so we do the calculus using (22) and obtain \(\lambda_{vW} = 1.006 \), which shows that we can use for calculus purposes \(\lambda_{vW} = 1 \), equation (22) gives more values to \(\lambda_{vW} \), but do not have physical meaning , in accordance with [20].

So we use only the linear approximations of (21), and supposing a value \(\lambda_{vW} = 1 \), and we obtain the approximate expression,
\[\eta_{vW} = 1 - \sqrt{\tau} - \frac{1}{2} \left(1 - \sqrt{\tau} \right)^2 = \frac{1-\tau}{2} = \frac{2\gamma}{2} . \quad (23) \]

In this approximation we observe a relation between Carnot’s efficiency (\(\eta_C \)) and van der Waals’s efficiency (\(\eta_{vW} \)) at maximum power, which is \(\eta_{vW} = \eta_C/2 \). It is reasonable because \(\eta_{vW} \) is smaller than \(\eta_C \), so the efficiency of a CA engine working in the maximum power regime using a van der Waals gas working substance is given by (21), with \(\tau = T_2/T_1 \). Now, substituting this efficiency (23), into equations (19) and (20) renders
\[\bar{x} = \frac{T_1}{2} \left(1 + 3\tau \right) . \quad (24) \]
\[\bar{y} = \frac{T_2}{4} \left(1 + 3\tau \right) . \quad (25) \]

From (14), and (18)-(20) we can write the power output of the steady-state in terms of \(T_1 \) and \(T_2 (T_1, and \(\tau) \) and it becomes
\[\bar{P} = \frac{T_1\alpha}{4} \left(1-\tau \right)^2 . \quad (26) \]

Solving \(T_1 \) and \(T_2 \), from equations (19) and (20) results in
\[T_1 = -\frac{2\bar{y} \bar{y}}{\bar{x} - 3\bar{y}} . \quad (27) \]
\[T_2 = \frac{2}{3} \left(2\bar{y} + \frac{x\bar{y}}{\bar{x} - 3\bar{y}} \right) . \quad (28) \]

Finally substituting (27) and (28) in (26) we obtain the power output in steady-state \(\bar{P} \) as function of \(\bar{x} \) and \(\bar{y} \).
\[\bar{P} = -\frac{a(x-y)}{\bar{x} - 3\bar{y}} . \quad (29) \]

LOCAL STABILITY OF AN ENDOREVERSIBLE CURZON-AHLBORN ENGINE

Following Santillán et al [1], a system of differential equations is constructed, which provides information about of the stability engine. Santillán et al. developed a system of coupled differential equations to model the rate of change of intermediate temperature.

Assuming that the temperatures \(x \) and \(y \) correspond to macroscopic objects with heat capacity \(C \), the differential equations for \(x \) and \(y \) are given by [1]
\[\frac{dx}{dt} = \frac{1}{c} [a(T_1 - x) - J_1] \quad (30) \]
\[\frac{dy}{dt} = \frac{1}{c} [J_2 - a(y - T_2)]. \quad (31) \]

Both derivatives cancel when \(x, y, J_1 \) and \(J_2 \) take their steady state values. Under the endoreversibility assumption, the heat flux from \(x \) to the working fluid is \(J_1 \) and the heat flux from the Carnot engine to \(y \) is \(J_2 \), so \(J_1 \) and \(J_2 \) are given in terms of \(x \) and \(y \), and the power output \(P \) as,
\[J_1 = -\frac{x}{x-y} P . \quad (32) \]
\[J_2 = -\frac{y}{x-y} P . \quad (33) \]

It seems reasonable to assume that the power output produced by the CA engine is related to temperature \(x \) and \(y \) in the same way that the power output at steady state \(\bar{P} \) depends on \(\bar{x} \) and \(\bar{y} \) in the maximum power regime (see equation (26)), i.e.,
\[P = \frac{a(x-y)^2}{3x-y}. \quad (34) \]

The substitution (32)-(34) in (30) and (31) leads to the following set of differential equations for temperatures \(x \) and \(y \) of a CA engine performing in maximum-power regime and using a van der Waals gas as working substance.
\[\frac{dx}{dt} = \frac{a[T_1(x-y)+2xy]}{c(x-y)} \quad (35) \]
\[\frac{dy}{dt} = \frac{a[T_2(x-y)-2yx(x-2y)]}{c(x-3y)} . \quad (36) \]

To analyze the system stability near to the steady state, we proceed by following the steps described in section stability with \(\xi = 0 \). First we define
\[f(x,y) = \frac{a[T_1(x-y)+2xy]}{c(x-3y)} . \quad (37) \]

and
The matrix \(A = \begin{pmatrix} f_x & f_y \\ g_x & g_y \end{pmatrix} \) is called the Jacobian matrix. Now using Eqs. (37) and (38), we obtain

\[
\begin{align*}
 f_x &= -\frac{6\alpha(1-\tau)^2}{C(1+3\tau)^2} \\
 f_y &= \frac{\alpha}{C(1+3\tau)^2} \\
 g_x &= \frac{2\alpha(1+\tau)^2}{C(1+3\tau)^2} \\
 g_y &= -\frac{4\alpha(1+\tau+2+3\tau)}{C(1+3\tau)^2}
\end{align*}
\] (42)

with \(\tau = T_2/T_1 \).

By substitution of (39)-(42) in Eq. (11) with \(\xi = 0 \), we find that both eigenvalues \(\lambda_1 \) and \(\lambda_2 \) have real parts, then we can conclude that any perturbation decays exponentially with time and thus that steady-state is stable for every value of \(\alpha \), \(C \) and \(\tau = T_2/T_1 > 0 \). The above permit us establish the relaxation times, in [5] was studied the dynamic properties for this engine and is shown that energetic properties of an endoreversible Curzon-Ahlborn engine using a Van der Waals gas working at maximum power output regime (MP) worsens as \(\tau \) decrease to zero, and there is an interval for the Curzon-Ahlborn engine which has efficiency and power output subject to compromise with \(\tau \), as it has been shown in [1,3,8]. In [6] was studied the dynamic properties for this engine and is shown that energetic properties of an endoreversible Curzon-Ahlborn engine using a van der Waals gas working at maximum ecological regime (ME). This engine has the same characteristic as the maximum power output regime, now our interest is show the behavior for both regimes; in Fig. 2 we compare the relaxation times for both regimes, we observe that relaxation times exhibit approximately the same stability interval.

DYNAMIC EFFECTS OF TIME DELAYS

Consider again the systems of delay differential equations given by Eqs. (1) and (2), but now \(\xi = \frac{\pi}{2} \). They can rewritten as

\[
\begin{align*}
 \frac{dx}{dt} &= f(x,y,\pi/2) \\
 \frac{dy}{dt} &= g(x,\pi/2, y)
\end{align*}
\]

with \(f \) and \(g \) as defined in Eqs. (30) and (31). From the fixed points theory with time delays, the time course of small perturbations from the steady state is determined; we can write Eq. (11) as

\[
(f_x - \lambda)(g_y - \lambda) - f_y g_x e^{-2\pi \lambda} = 0.
\] (43)

The stability analysis of a dynamic system involving time delays can be quite complicated due to the fact that, in general, the characteristic equation has an infinite number of solutions. On the other hand, it is known that a common effect of time delays is to destabilize formerly stable steady states by inducing sustained oscillations. To test whether this happens, assume that \(\lambda \) is imaginary \((\lambda = i\omega) \) and substitute into the characteristic equation to obtain

\[
(-A\alpha^2 + B) + iD\omega = e^{-i\omega t},
\] (44)

with

\[
A = \frac{1}{f_y g_x}, \quad B = \frac{f_x g_y}{f_y g_x} \quad \text{and} \quad D = \frac{f_x g_y}{f_y g_x}.
\]

It follows form Eqs. (39)-(42) that \(f_x g_y < 0 \). while \(f_y g_x > 0 \). This further implies that constants \(A, B, \) and \(D \) are all positive.

The left-hand side of Eq. (44) determines the lower branch of a horizontal parabola in the complex plane. This parabola opens to the to the left and its vertex is located in the point \((B, 0) \). On the other hand, the right-hand side of Eq. (44) determines a unitary circle in the complex plane. The points where these curves cross correspond to values of \(\omega \) and \(\pi \) at which sustained oscillations appear due to a destabilization of the steady state, or vice versa. If both curves never cross, the steady state cannot be destabilized by the total delay \(\pi \), no matter how long it is. Let \(\rho \) and \(\sigma \) real variables along the real

![Figure 3. Phase portrait of a Curzon-Ahlborn engine working at two different regimes](image-url)

![Fig. 2 Plots of relaxation times \(t_1 \) and \(t_2 \), in units of \(C/\alpha \), vs. \(\tau \)](image-url)
and the imaginary axes of the complex plane, respectively. In terms of these variables, the equation for the parabola can be written as

\[\rho = B - \frac{A}{\sigma^2}. \]

(45)

While the equation for the circle is

\[\rho^2 + \sigma^2 = 1. \]

(46)

To find the points where both curves cross, solve for \(\sigma \) in Eq. (45) and substitute into Eq. (46) to obtain

\[\rho^2 - \frac{D^2}{A} \rho + \frac{B^2 - A}{A} = 0. \]

(47)

The solutions to this last equation give the real coordinates of the crossing points. The corresponding imaginary coordinates can then calculated as \(\sigma = -\sqrt{1 - \rho^2} \). The solutions of Eq. (47) are

\[\rho_1 = \frac{L}{2} + \frac{1}{2} \sqrt{L^2 - 4K}, \]

(48)

\[\rho_2 = \frac{L}{2} - \frac{1}{2} \sqrt{L^2 - 4K}, \]

(49)

with \(L = D^2/A \) and \(K = (B^2 - A)/A \). From its definition and the fact that \(A \) and \(D \) are positive, \(L \) is also positive and so \(\rho_1 > \rho_2 \). In Fig. 4, the plot of \(\rho_1 \), \(\rho_2 \) and \(\tau \) is shown. Notice that \(\rho_1 \) and \(\rho_2 \) there are no common points. Therefore, the parabola of Eq. (41) never crosses the unitary circle given by Eq. (45), because \(\rho_1, \rho_2 > \) implies that \(\sigma \) takes imaginary values and the endoreversible Curzon-Ahlborn engine using a Van der Waals gas working at maximum power output regime cannot be destabilized by any time delay. In Fig.4 is shown this result, it is important to remark that there are no common points on both surfaces.

![Figure 4](image-url)

Figure 4. Plot of \((\rho_1, \rho_2)\), as given by Eqs. (48) and (49), vs. \(\alpha \) and \(\tau \), for an endoreversible Curzon-Ahlborn engine using a Van der Waals working at maximum ecological regime.

Analogously we can do the same calculus for an endoreversible Curzon-Ahlborn engine using a Van der Waals gas working at maximum ecological regime, and we find a similar behavior and this is shown in Fig. 5.

![Figure 5](image-url)

Figure 5. Plot of \((\rho_1, \rho_2)\), as given by Eqs. (48) and (49), vs. \(\alpha \) and \(\tau \), for an endoreversible Curzon-Ahlborn engine using a Van der Waals working at maximum ecological regime.

NON-ENDOREVERSIBLE CURZON-AHLBORN ENGINE

Following Páez-Hernández et al. [8], we obtain the relaxation times, the phase portrait diagram and also investigate the effect of delays in time, for reasons of space, here we only show in Fig. 6 the behavior of the effects of delays for a non-endoreversible Curzon-Ahlborn engine using a Van der Waals gas working at maximum power output regime.

![Figure 6](image-url)

Figure 6. Plot of \((\rho_1, \rho_2)\), as given by Eqs. (48) and (49), vs. \(\alpha \) and \(\tau \), for a non-endoreversible Curzon-Ahlborn engine using a Van der Waals working at maximum power output regime.

CONCLUDING REMARKS

In this paper we have extended a previous work by R. Páez-Hernández et al. [5,6] in which the local stability of an endoreversible Curzon-Ahlborn engine working in both maximum power output and maximum ecological regimes. Here, we have considered a Curzon-Ahlborn engine using a Van der Waals gas working at maximum power output regime, also we present the analysis to a non-endoreversible Curzon-Ahlborn in the maximum power regime, taking into account the engine inherent time delays. Our results indicate that the only effect of different regimes is a rotation in the corresponding eigenvectors in the phase portrait.

Time delays are present in many systems subject to dynamic regulation. In the endoreversible and non-endoreversible Curzon-Ahlborn engine, the inherent time delays are not capable of destabilizing the steady state; thus, they not to play a role in the trade-off between energetic and dynamic properties. This does not have to be true for all energetic-converting systems, though. For instance, time delays are essential to understand the origin of clonus (sustained oscillations in muscle contraction).

ACKNOWLEDGMENT

This work was partially supported by CONACYT (SNI). We appreciate the valuable review from F. Miranda Maldonado of the manuscript in English.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Quantity</th>
<th>SI Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>constant which depend on the gas</td>
<td>(m3/kg mol)</td>
</tr>
<tr>
<td>C</td>
<td>Heat capacity</td>
<td>(J/K)</td>
</tr>
<tr>
<td>\bar{P}</td>
<td>steady-state power output</td>
<td>(W)</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
<td>(s)</td>
</tr>
<tr>
<td>\bar{x}</td>
<td>steady-state working hot temperature of the Carnot cycle</td>
<td>(K)</td>
</tr>
<tr>
<td>\bar{y}</td>
<td>steady-state working cool temperature of the Carnot cycle</td>
<td>(K)</td>
</tr>
<tr>
<td>α</td>
<td>thermal conductance</td>
<td>(W/K·m)</td>
</tr>
<tr>
<td>δx</td>
<td>small disturbances from the corresponding fixed point values</td>
<td>(m)</td>
</tr>
<tr>
<td>δy</td>
<td>small disturbances from the corresponding fixed point values</td>
<td>(m)</td>
</tr>
<tr>
<td>λ_1</td>
<td>eigenvalue 1</td>
<td>(Hz)</td>
</tr>
<tr>
<td>λ_2</td>
<td>eigenvalue 2</td>
<td>(Hz)</td>
</tr>
<tr>
<td>ξ</td>
<td>time delays</td>
<td>(s)</td>
</tr>
<tr>
<td>\dot{J}_1</td>
<td>steady-state heat flow from hot to the engine</td>
<td>(W)</td>
</tr>
<tr>
<td>\dot{J}_2</td>
<td>steady-state heat flow from the engine to cold</td>
<td>(W)</td>
</tr>
<tr>
<td>τ_1</td>
<td>relaxation time 1</td>
<td>(s)</td>
</tr>
<tr>
<td>τ_2</td>
<td>relaxation time 2</td>
<td>(s)</td>
</tr>
<tr>
<td>T_1</td>
<td>reservoir at temperature hot</td>
<td>(K)</td>
</tr>
<tr>
<td>T_2</td>
<td>reservoir at temperature cold</td>
<td>(K)</td>
</tr>
<tr>
<td>\bar{u}_1</td>
<td>eigenvector corresponding to eigenvalue λ_1</td>
<td>(m)</td>
</tr>
<tr>
<td>\bar{u}_2</td>
<td>eigenvector corresponding to eigenvalue λ_2</td>
<td>(m)</td>
</tr>
<tr>
<td>v_{max}</td>
<td>maximum subtended volume by the gas in a cycle</td>
<td>(m3/kg mol)</td>
</tr>
<tr>
<td>v_{min}</td>
<td>minimum subtended volumes by the gas in a cycle</td>
<td>(m3/kg mol)</td>
</tr>
</tbody>
</table>

Dimensionless Quantities

- γ the ratio of the constant-pressure and constant-volume heat capacities
- $\bar{\eta}$ steady-state efficiency
- τ ratio of the hot and cold temperatures
- η_p efficiency of a Curzon-Ahlborn engine working at maximum power output using a van der Waals gas as working substance
- A_1 arbitrary constant 1
- A_2 arbitrary constant 2
- B_1 arbitrary constant 3
- B_2 arbitrary constant 4
- c_v volumetric compression ratio

REFERENCES