
12th Joint European Thermodynamics Conference 
Brescia, July 1-5, 2013 

 

 

INTRODUCTION 

Mathematically modeling physical phenomena, such as a 

rigid body dynamics of the deformation of an elastic material 

or the propagation of an electromagnetic wave in the 

atmosphere, our best scientific knowledge about the laws of 

physics. So for the first case we used Newton's laws, the 

continuum mechanics and Maxwell's laws. 

These laws are the result of centuries of experimentation, 

observation and inspiration of the scientists involved in the 

creation of knowledge of nature. 

In biology and life sciences in general, the interaction 

between the observed phenomena and their mathematical 

description, are still in the early stages of development and 

apart from the Hardy-Weinberg equilibrium. The philosophy 

is to develop mathematical models that can describe in a 

qualitative manner observed biological processes.  

There is a lot of work in the literature of complex systems, 

which consider its efficiency analysis and even related to 

probable heart heartbeat  analyzed as time series, others show 

dynamic and thermodynamic  models. Our the study subject is 

the heart, so we give a brief description about its operation. 

The heart is one of the most important organs of the human 

body and it has as principal task, maintain circulation the 

blood, so the function of the heart is to pump blood. The 

blood carries oxygen (O2) from the lungs to the various 

tissues of the body and it carries carbon dioxide (CO2) from 

these tissues back to the lungs. Since the circulation forms a 

closed loop, its description can begin anywhere. We will 

begin on the left side of the heart. The left heart side receives 

blood rich in O2 and pumps this blood into the systemic 

arteries. These form a tree of progressively smaller vessels 

that supply fully oxygenated (and hence bright red) blood to 

all of the organs and tissues of the body. From the smallest of 

the systemic arteries, blood flows into the systemic 

capillaries, which are roughly the diameter of a single red 

blood cell. It is in capillaries that the actual exchange of O2 

and CO2 takes place. The blood that leaves the systemic 

capillaries carries less O2 and more  CO2 than the blood that 

entered. (The loss of O2 causes a change in the color so that 

the blood is now more bluish than before.)  

Leaving the systemic capillaries, the blood enters systemic 

veins through which it flows in vessels of progressively 

increasing size toward the right side of the heart. 

The right heart pumps blood into the pulmonary arteries 

which form a tree that distributes the blood to the tissues of 

the lung. The smallest branches of this tree give rise to the 

pulmonary capillaries where CO2 leaves the blood stream and 

O2 enters from the air space of the lungs. Leaving the 

pulmonary capillaries, the oxygenate blood is collected in the 

pulmonary veins through which it flows back to the left heart. 

This complete the circulation, F. C. Hoppensteadt [1]. 

BLOOD FLOW 

The circulatory blood system 

If we consider for a moment a simplified concept of the 

circulatory blood system in man, we can imagine that we have  

a pump delivering blood to a complicates networks of pipes, 

which has innumerable connections. To develop an 

appropriate mathematical model of this system and its 

behavior is an almost impossible task. Thus, in order to make 

any progress, we attempt to model parts of system separately. 

Here we concentrate on a small section of this circuit, say in 

the region of the aorta as shown in Fig. 1. Indeed we shall 

consider the relative straight section between A and B.  One 

can imagine that the blood flow in this section behaves in 

much  the same way a water in a cylindrical tube. This, 

however, is a gross oversimplification of the situation. To see 

this, let us consider some salient facts regarding  blood flow. 

First of all unlike water, blood does not have constant 
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ABSTRACT 

In this work, we use some results from mechanics of fluids and the thermodynamics of finite time to calculate, the efficiency of 

the heart, considering the heart like a mechanics pump. We also study the model of the heartbeat. We find results of the 

efficiency to heart far away from the real values, i.e. the model to heart like a mechanics pump is too oversimplified, the above 

is because the heart is a complex system. However using the nonlinear dynamics considering the time delays inherent of the 

system, we obtain two fixed points which sustained oscillations, and these could be the Diastole and Systole, these parameters 

are associated with blood flow in human body called pressure arterial and are very important in the cardio-vascular problems.  

We have to point out that our work is from point view academic, and pretend  to the students taking in account that the theory 

can be immediately applied to many real systems, but also has very limitations.           
 
 

499



 

viscosity and this vary with the velocity. Thus blood may be 

claimed to be non-Newtonian; indeed the properties of blood 

change rapidly if removed from the system and so it is 

extremely difficult to perform experiments on it under 

laboratory conditions . 

 

 
Fig. 1 Schematic description of an aorta 

 

If we now consider the type of flow in an artery, it is 

apparent that because the heart delivers blood in short bursts 

during contraction into systole, the flow is pulsatile and not 

uniform. Furthermore, we do not know the velocity profile of 

the flow entering  A in Fig. 1  and consequently the velocity 

profile at B is also unknown. This observation is of 

fundamental importance in the mathematical description of 

blood flow. On the order hand, the hydrodynamic problem of 

considering the change of an initial velocity  profile a 

Newtonian fluid in a rigid pipe is fairly well understood and is 

based on the fundamental theory of Poiseuille (1846). One 

should remark here that Poiseuille whose contributions to 

hydrodynamics are well known to engineers and 

mathematicians, was in fact a physician and his interest was 

precisely the problem we are considering here, namely, the 

study of the blood flow. 

Let us now focus on the arteries themselves. We know 

them to be elastic and a typical cross section may change 

significantly with time due to pulsating nature of the flow of 

blood. Thus once again it may be unreasonable to treat the 

arteries as rigid tubes. Nevertheless we find it necessary to 

assume this as first approximation. 

   In Fig. 1 consider the flow of blood delivered into an 

aorta. The blood is pumped in an asymmetrical fashion and 

there large cross-channel components of velocity in the arch 

region and consequently large thoracic surgery on animals. 

However, away from the arch itself, say in section A-B, the 

cross-channel components of velocity are considerably 

reduced and the flow is almost entirely  longitudinal but, of 

course, still pulsatile. In the arc region it is found thoracic 

surgery that the arc pliant  and yields easily to the cross-

channel pressure gradients. Thus it is reasonable to assume 

changes and the “general give” radially of all cross sections of 

the aorta cause changes in pressure to be dampened, 

especially the radial components. We radial velocity 

components may be neglected. This assumption is known to 

physiologists as the Windkessel effect assumption, an idea 

introduced by the German physiologist Otto Frank, D. S. 

Jones [2]. 

 

Mechanics of Fluids 

We define a fluid as a substance which must continue to 

change shape as long as there is a shear stress, however small, 

present. By contrast a solid undergoes a definite displacement 

(or breaks completely) when subjected to a shear stress. In 

fluid mechanics study different types of fluids such as 

compressible, incompressible, Newtonian and non-

Newtonian. In the previous section studied that blood flow 

can be considered as a non-Newtonian fluid, as this does not 

satisfy the conditions to be studied as incompressible and 

Newtonian fluid. A. Bejan [3] was obtained an expression to 

calculate the efficiency for a piston and cylinder apparatus for 

extracting mechanical power from the flow of a fluid between 

two pressure reservoirs, given as 

 

     
 

 
(  

  

  
)                                              (1) 

 

where      is the maximum efficiency,  P1 is the reservoir 

pressure, P2 is the reservoir pressure with P1 > P2. The Fig.11-

28 of A. Vander et al [4] shows that the initial pressure 

reaches a value more than 110 mmHg before going througth 

the aorta. 

Now as we saw in the physiology of the left side of the 

heart, we can assume in a first approximation that this can be 

represented as proposed in [3], this is shown in Fig.2. 

 

 
Fig. 2 Piston and cylinder apparatus for extracting mechanical 

power from the flow of a fluid between two pressure reservoirs. 

 

On the other hand, the maximum pressure supported by a 

vein is 140 mmHg, also the normal arterial pressure in person 

without hypertension is 120 mmHg, moreover the biological 

systems have good efficiency, then we can suppose that the 

heart’s efficiency is around 30%, i.e.          , so from 

Eq. (1) we obtain that P1 =300mmHg, with P2 =120 mmHg, 

these result cannot be real. Therefore our approximation of 

the heart like mechanics pump is far from the reality. And we 

have to propose a model that takes in account more details of 

the blood flow. 

 

NON- LINEAR DYNAMICS 

As is known, the heart muscle is an autonomous system 

and has an intermittent dynamic, i.e. its operation is periodic. 

Then we use Non-linear Dynamics considering the time 

delays inherent to the heart to study the model heart’s 

dynamics proposed by E. C. Zeeman [5]. 

Times Delays 

In real life situations when the value of a variable is 

modified the effect in the dynamic response of the system is 

not observed immediately. A certain time must elapse until 

the system begins to respond or "feel" the effect of the 

changes made. Suppose we modify the concentration of a 

reactor feed. Our experience, and common sense tells us that 

time passes until the variables that characterize the dynamic 

behavior of the reactor (eg concentration) begin to modify its 

value relative to their pre-change. These systems are known 

as dynamical systems. Delayed systems appear naturally in 

Medicine, Biology and Engineering. These systems have been 
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studied since before the last century. Studies in Medicine and 

Biology begin with Ross’ epidemiology models (1911) and 

others in the early twentieth century, which were studied by 

Lotka, Volterra and Kostitzin, N. McDonald [6]. A distinctive 

feature of these systems is that their rate of evolution is 

described by differential equations that include information 

about the history of the system. The effects of delays are of 

great interest, since their presence may include complex 

behavior(oscillations, instability, bad system performance).  

R. Páez-Hernández et al [7] studied the effect time delays 

produced in a mathematical model for the stretch reflex 

regulatory pathway. A. Rojas-Pacheco et al [8] studied time-

delay effects on dynamics of a two-actor conflict model. 

Fixed points and linearisation system with delays 

Consider a dynamic system which has a single variable 

with time delays , 

  

  
                                                              (2) 

  

  
                                                              (3) 

where subscript   is a time delay variable. Following step to 

step to H. S. Strogatz [9] to obtain a linear system,  

 ̇   (        ),  ̇   (       
   )        (4) 

where   and   represent a small perturbation of the system 

and         is a fixed point, now we do a Taylor’s series 

expansion to Eq. (2) and we consider negligible the terms of 

two on ward, and evaluate in the steady-state and we obtain 

 ̇  
  

  
|
       

  
  

   
|
       

                                 (5) 

 ̇  
  

   
|
       

   
  

  
|
       

                                (6) 

Now we assume that   and   are of the form  

     
  (5)                                                      (7) 

      
                                                       (8)   

     
                                                             (9) 

      
                                                     (10) 

where   is a complex number,    and    are constant. 

Substituting Eqs. (7)-(10) into Eqs. (5) and (6) leads to the 

following set of homogeneous linear system for   and   : 

            
                                        (11) 

   
       (    )    .                              (12) 

This system of equations has non-trivial solutions only if 

the determinant of the matrix of coefficients equals zero, i.e. 

      (    )     
   

       .                 (13) 

This equation is also called the transcendental 

characteristic equation, and can be written as 

               ,                                     (14) 

with z an eigenvalue, and      and    are polynomials of 

second and zero order, respectively. 

The solutions to this equation are not obvious because has 

an infinite number of roots [6]. One way to overcome this 

situation is to consider the fact a common effect of time 

delays to destabilize stable fixed points or to stabilize unstable 

fixed points by sustained oscillations. If we assume that 

(    ), and substitute in (14), we obtain a complex variable 

equation. 

                                                    (15) 

 

where      and      are second and first order polynomials, 

respectively. We observe that the right hand side of this 

equation represents the unitary circle whereas the left hand 

side describes a parabola. The intersection of these two curves 

could represent a change in the stability of the system. The 

analysis of intersection between the parabola and the unitary 

circle leads to the following classification: 

a. If the parabola does not intersect the unitary circle, and 

the system is stable to    , then the system is stable 

independent of delay. 

b. If the system is stable for     and the parabola 

intersects the unit circle, then the system can be 

affected by delays. 

Non-Linear Dynamic Model of Heart 

A mathematical model that describes the behaviour of 

the heartbeat was developed in [5], where it was suggested 

that such a model contain three basic features: 

 a stable equilibrium state representing diastole; 

 the threshold for triggering the electrochemical 

wave causing the heart to go into systole; and 

 the return of the heart into the diastolic state. 

   The resulting model is given by 

 ̇   
 

 
                                         (16) 

 ̇                                                        (17) 

 

where x(t) represents the length of the muscle fiber, y(t) is a 

variable related to electrochemical activity; the parameter ϵ is 

a small positive constant associated with the fast eigenvalue 

of the system,    is a scalar quantity representing a typical 

length of muscle fiber in the diastolic state, and T represents 

tension in the muscle fiber. Now we use the result for 

linearization systems, for the case     ,  
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and 

 

                                                         (19)  

 

this yields, 

  |        
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now substituting Eqs.(20)-(23) into Eq. (13), we obtain the 

eigenvalues         and         for    ,       and 

    . Therefore, the origin is unstable since both 

eigenvalues are real and positive. In Fig. 3 we show the phase 

portrait of Eqs. (2) and (3), with the same values for the 

parameters, the  cubic line (red curve) represents the steady 

state of Eq.(18), A and B may be represent the systole and 

diastole points. 

 

 
Fig.3  Phase portrait of the heartbeat model. 

Dynamic effects of time delays 

   Consider again the systems of delay differential equations 

given by Eqs. (2) and (3), but now   
 

 
. They can rewritten 

as 

  

  
  (     ⁄ ) 

  

  
  (   ⁄   ) 

 

with   and   as defined in Eqs. (18) and (19). Following 

section 2.1, the time course of small perturbations from the 

steady state is determined; we can write Eq. (13) as 

      (    )       
     .                     (24) 

   The stability analysis of a dynamic system involving time 

delays can be quite complicated due to the fact that, in 

general, the characteristic equation has an infinite number of 

solutions. On the other hand, it is known that a common effect 

of time delays is to destabilize formerly stable steady states by 

inducing sustained oscillations. To test whether this happens, 

assume that   is imaginary        and substitute into the 

characteristic equation to obtain 

                    ,                           (25) 

wit 

  
 

    
 ,    

    

    
  and   

     

    
. 

   It follows from Eqs. (20)-(23) that     ,     ,      

and     . This further implies that E < 0, F=0, and D > 0. 

   The left-hand side of Eq. (25) determines the lower branch 

of a horizontal parabola in the complex plane. This parabola 

opens to the to the right and its vertex is located in the point 

     . On the other hand, the right-hand side of Eq. (25) 

determines a unitary circle in the complex plane. The points 

where these curves cross correspond to values of   and   at 

which sustained oscillations appear due to a destabilization of 

the steady state, or vice versa. Let   and   real variables along 

the real and the imaginary axes of the complex plane, 

respectively. In terms of these variables, the equation for the 

parabola can be written as 

   
 

   
                                                            (26) 

While the equation for the circle is 

       .                                                         (27) 

To find the points where both curves cross, solve for   in Eq. 

(26) and substitute into Eq. (27) to obtain 

   
  

 
   .                                                      (28) 

   The solutions to this last equation give the real coordinates 

of the crossing points. The corresponding imaginary 

coordinates can then calculated as    √    . The 

solutions of Eq. (28) are 

   
 

 
 

 

 
√     ,                                           (29) 

 

   
 

 
 

 

 
√      ,                                          (30) 

with      ⁄  and     . From its definition and the fact 

that E is negative and D is positive, L is negative. Notice that 

   and    have common points. Therefore, the parabola of Eq. 

(26) crosses the unitary circle in the points (-0.19,0.98), this 

indicating that there a two points which induce oscillations, 

i.e., those points can be destabilize the system.  In Fig. 4 

shows these points. 

 

Fig. 4 Plot shows the intersections between unit circle and the 

parabola given in Eqs.(26) and Eqs.(27). 

COMMENTS  

   From the result obtained with mechanics of fluids we can 

assert, that our approximation of the heart like mechanics 

pump is far from the reality. We will looking another model 

that takes in account more details of the blood flow, and 

probably we can get an expression, that gives values more 

realist. Finally we have to remark that Non-linear dynamics is 

an useful and powerful tool to tackle system with time delays, 

because it was possible to get two points which destabilizes 

the system, and assume that the intersection of these points 

could be associated with both arterial pressure the called 

Systole and Diastole, important parameters of pressure in 

blood flow.   
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NOMENCLATURE  

Symbol Quantity SI Unit 

  length of muscle fiber (m) 

   typical length of muscle fiber in the 

diastolic state 

(m) 

 

  variable related to electrochemical 

activity 

(J) 

 

   small disturbances from the 

corresponding 

fixed point values 

(m) 

   small disturbances from the 

corresponding 

fixed point values 

(m) 

 

   eigenvalue 1 (Hz) 

 

   eigenvalue 2 (Hz) 

 

  time delay (s) 

 

  frequency (Hz) 

 

   constant high pressure reservoir (Pa) 

 

   constant  low pressure  reservoir (Pa) 

 

T tension in the muscle fiber (N) 

 ⃗   
 

eigenvector corresponding to 

eigenvalue    

(m) 

 ⃗   
 

eigenvector corresponding to 

eigenvalue    

(m) 

 

    

 

                                                       

 

 

 

 

 

 

 

Dimensionless Quantity 

         is a small positive constant 

         efficiency 

A systole 

B diastole 

E       constant 

F          constant 

D         constant 

i            imaginary unit       

A1         arbitrary constant 1 

A2         arbitrary constant 2 

B1   arbitrary constant 1 

B2 arbitrary constant 2 
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