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EXTENDED ABSTRACT 
 

The analysis of complex reaction networks can be performed in two complementary ways: 
 
(a) Insight in the chemistry of the investigated process can be translated into so-called chemical rules. This can be implemented as 

algorithms in computer code, allowing the automatic generation of reaction networks consisting of several thousands of elementary 
steps. Databases, which are based either on experiments or on the quantum chemical calculation of model reactions, then provide the 
corresponding thermodynamic and kinetic parameters. 
 
Numerical integration techniques and kinetic Monte-Carlo simulations finally allow, e.g. via a sensitivity analysis, to assess the 
significance of each elementary reaction family considered, and the effects of the reaction conditions on them. 
 
Recent results by Gorban et al. [1-2] provide the means for a rigorous asymptotic analysis of complex kinetic models for both 
reversible and irreversible mechanisms. This first way can be interpreted as a top-down approach. 
 

(b) Alternatively, under the bottom-up approach, the so-called minimal reaction networks and mechanisms are the starting point. For the 
steady-state kinetics of catalytic reactions a general, a thermodynamically consistent rate equation can be constructed using algebraic 
methods and/or graph theory [3]. For linear reaction mechanisms this rate equation consists of a driving force, which ensures 
thermodynamic consistency, and a resistance, which is the inverse of the total weight of the node-spanning trees of the graph 
corresponding to the reaction mechanism. This resistance can actually be measured as the ratio of the driving force to the reaction rate.  
 
The analysis of the concentration and temperature dependence of the resistance then provides direct information on the nature of the 
elementary steps involved in the reaction mechanism. For nonlinear reaction mechanisms an implicit equation for the reaction rate can 
conveniently be used to obtain insights. This so-called kinetic polynomial is a generalization of the well-known Langmuir-
Hinshelwood-Hougen-Watson (LHHW) rate equation for linear reactions mechanisms. 
 
In the non-steady-state kinetic description, data from pulse-response experiments with insignificant perturbation (data obtained from 
Temporal Analysis of Products) can be used to construct the model in the bottom-up style. In such cases, the model is built using 
decision tree procedures. 

 
A new, additional form of pattern analysis exists that lies beyond the alternative between the top-down and bottom-up approaches: 
 
(c) It is based on the following new kinetic phenomena that were discovered theoretically [4-8] and experimentally confirmed [8]. 

 
(1) Intersections of concentration dependencies, coincidences of such intersections, and the structure of possible orderings of 

concentration and time values defined by intersections.  
 
The intersections under consideration are defined by the concentration dependencies of the system when started from special, 
extreme initial conditions. For instance, the two-step reversible-irreversible mechanism A⇄B→C can be studied for an initial state 
where all substance is A and no B or C occur (the A-trajectory) and from the initial state where all substance is B and no A or C 
occur (the C-trajectory). We then denote by CAA(t) the time evolution of the concentration of A in the A trajectory, by CAB(t) that 
of A in the B trajectory, etc. 
 
As examples of intersections, we can investigate whether CAA(t) and CBA(t) intersect, and whether CBA(t) intersects with CCB(t). 
Given two such intersections, we consider their ordering, either in time or in concentration value: for some choices of the 
parameters the first will come before the second, or vice versa. At the boundary between both parameter domains there occurs a 
coincidence: the two intersections coincide in their time or concentration value. 
 
The various cases are best presented in graphical form, as in Fig. 1, where the black means neither intersection occurs, the dark 
yellow only the first, the dark blue only the second, the blue that the first intersection occurs before the second, and the yellow that 
the first occurs after the second. See [6] for the detailed study of this two-step mechanism. 
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Figure 1: Example parameter domain for intersections. 
 
 
 

(2) Invariances of a special type observed in so-called dual experiments. 
 
When studying these intersections, a remarkable property arises: some of the concentration dependencies are always proportional 
to each other, so that their intersection is either empty (in positive time) or they coincide at all points in time. In our simple 
example A⇄B→C this is the case for CAB(t) and CBA(t): at all t>0, CBA(t)/CAB(t)=k+

1/k-
1, the equilibrium constant of the first 

reaction step. Closer analysis reveals that this property holds in all linear reaction schemes for each pair of substances A and B 
between which a reversible reaction occurs, and that it is a consequence of Onsager reciprocity (see [7]). 
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