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ABSTRACT
By considering the Wigner formalism the quantum maximum entropy principle (QMEP) is here asserted as the fundamental
principle of quantum statistical mechanics when it becomes necessary to treat systems in partially specified quantum mechanical
states. From one hand, the main difficulty in QMEP is to define an appropriate quantum entropy that explicitly incorporates
quantum statistics. From another hand, the availability of rigorous quantum hydrodynamic (QHD) models is a demanding issue
for a variety of quantum systems like, interacting fermionic and bosonic gases, confined carrier transport in semiconductor
heterostrucures, anyonic systems, etc. We present a rigorous nonlocal formulation of QMEP by defining a quantum entropy
that includes Fermi, Bose and, more generally, fractional exclusion statistics. In particular, by considering anyonic systems
satisfying fractional exclusion statistic, all the results available in the literature are generalized in terms of both the kind of
statistics and a nonlocal description for excluson gases. Finally, gradient quantum corrections are explicitly given at different
levels of degeneracy and classical results are recovered when h̄ tends to 0.

INTRODUCTION

In thermodynamics and statistical mechanics entropy is the
fundamental physical quantity to describe the evolution of a
statistical ensemble. Its microscopic definition was provided by
Boltzmann through the celebrated expression S = kB lnΓ, where
kB is the Boltzmann constant and Γ is the number of microstates
exploiting the given macroscopic properties. In this context, it is
well known that in classical mechanics the entropy: i) allows the
violation of the uncertainty principle [1]; ii) can be considered
as a special case of the so-called Boltzmann-Gibbs-Shannon en-
tropy that enables one to apply results of information theory to
physics [1; 2]. In particular, maximum entropy principle (MEP)
allows one to derive [2; 3; 4; 5] the nonequilibrium distribu-
tion function associated with particles, and to determine the mi-
crostate corresponding to the given macroscopic quantity.

We remak, that the MEP can be exploited in the completely
nonlinear case, without any assumption on the nonequilibrium
processes. Alternatively, an approximate distribution function is
usually derived through a formal expansion around a local equi-
librium configuration and so Extended Thermodynamics (ET)
theories [3; 6] of N moments and degree α (ET α

N models) were
obtained. In this way, it was found possible to derive rigorous
hydrodynamic (HD) models based on the moments of the dis-
tribution function to different orders of a power expansion and
including appropriate closure conditions [3; 6; 7; 8]. Accord-
ingly, making use of the Lagrange multipliers technique, it was
found possible to construct the set of evolution equations for the
macro-variables of interest.

Apart from some partial attempts [2; 9; 10], this is no longer
the case in quantum mechanics. Here, the main difficulties
concern with: i) the definition of a proper quantum entropy
that includes particle indistinguishability; ii) the formulation

of a global quantum MEP (QMEP) that allows one to obtain
a quantum distribution function both for thermodynamic equi-
librium and nonequilibrium configurations. From one hand, in
the framework of a nonlocal quantum theory, the generalization
of the corresponding Lagrange multipliers is also an open prob-
lem. From another hand, a rigorous formulation of quantum HD
(QHD) closed models is a demanding issue for many kinds of
problems in quantum systems like, interacting fermionic and
bosonic gases, anyonic systems, quantum turbulence, quan-
tum fluids, quantized vortices, nuclear physics, confined carrier
transport in semiconductor heterostrucures, phonon and elec-
tron transport in nanostructures, nanowires and thin layers.

Recently, a comprehensive review on QMEP which sum-
marizes the state-of-the-art on this subject was presented in
Ref. [8]. Accordingly, all the results available from the liter-
ature for a three-dimensional (3D) Fermi and/or Bose gas, have
been generalized in the framework of a nonlocal Wigner theory
both in equilibrium and nonequilibrium conditions [11].

The aim of this work is to consider an extension of QMEP
in the framework of fractional exclusion statistics (FES). In par-
ticular we consider anyonic systems satisfying FES [12], and
to determine the thermodynamic evolution of an excluson gas
compatibly with the uncertainty principle. In this way, within
the framework of a QMEP-Wigner formulation, we generalize
all the results available from the literature in terms of both: the
kind of statistics and a nonlocal description for the quantum gas.

FRACTIONAL STATISTICS

Whereas fermions and bosons can exist in all dimen-
sions, certain low dimensional systems have elementary exci-
tations that may obey quantum statistics interpolating between
fermionic and bosonic behaviors. In particular, particles car-
rying these generalized statistics, are called generically anyons
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[13]. For anyons, fractional statistics are related to the trajectory
dependence in the particle exchange procedure in configuration
space and are connected to the braid group structure of particle
trajectories [13; 14; 15] in two spatial dimensions (2D). Mathe-
matically, fractional statistics are parameterized by a phase fac-
tor that describes how the field operators of an anyonic system
changes because of exchange procedure in 2D configuration
space [13; 14; 15]. Thus, the concept of anyons is specific to
two dimensions, and because of the trajectory dependence, the
single particle state is inextricably connected with the complete
state of the many-body configuration of the system. In 2D sys-
tems, the fractional statistics have been successfully applied to
describe the charged excitations (Laughlin quasi-particles [16])
of a fractional quantum Hall (FQH) [17] where the electron gas
shows a fractional electric charge [18] and, more recently, a di-
rect evidence of fractional exchange phase factor was observed
in experiments [19]. We remark, that fractional anyon statistics
has been formalized, to some extent [20; 21], also in the one-
dimensional (1D) case. In particular, for 1D systems the inter-
actions and statistics are inextricably related, because the colli-
sion phenomena are the only way to interchange two particles.
Accordingly, also in this case, anyons acquire a step-function-
like phase when two identical particles exchange their positions
in the scattering process. Anyons in 1D models are still unex-
plored to a wide extent, although many one-dimensional any-
onic models have been introduced and investigated in litera-
ture [22; 23; 24; 25; 26; 27] Thus, by defining the q-deformed
bracket [A,B]q = AB− qBA, we can introduce (for D = 1,2) the
anyon field operators Ψ(r) and Ψ†(r) with the general deformed
relations [14; 28; 29]

[
Ψ(r),Ψ(r′)

]
q =

[
Ψ†(r),Ψ†(r′)

]
q
= 0 , (1)

[
Ψ(r),Ψ†(r′)

]
q−1

= δD(r− r′) , (2)

where q(r,r′) is a discontinuous function of its arguments [14;
29] corresponding to a phase factor that denotes the system
statistics [30] and, for the sake of consistency

q(r,r′) = q−1(r′,r) , with q(r,r) =±1 , (3)

A different notion of fractional statistics, in arbitrary dimension
D, has been introduced by Haldane [31]. This approach is based
on a generalized Pauli exclusion principle where it is necessary
to count as changes the dimension of the single particle Hilbert
space when extra particles are added, keeping constant both the
boundary conditions and the size of the condensed-matter re-
gion. Particles that obey Haldane exclusion-statistics (HES) are
called exclusons with (in the case of single specie) a statistics
parameter κ =−δG/δN, where δG describes the change in size
of the subset of available single-particle states corresponding to
a variation of δN particles. It is known that HES is, in general,
different from anyon statistics. Indeed, the excluson statistics
is assigned to elementary excitations of condensed matter sys-
tems, which are not necessarily connected with braiding con-
siderations [21; 31]. However, there are some systems where
a thermodynamics coincidence of the two statistics was shown
[22; 25; 31; 32]. In this case, it is possible to think that the
anyon model is a microscopic quantum realization of Haldane
statistics.

In the next sections we consider anyonic systems satisfying
the FES, to describe the thermodynamic evolution of an exclu-
son gas by using QMEP-Wigner formalism. In this way, com-
patibly with the uncertainty principle, we include both the sta-
tistical effects and a nonlocal description for the system.

THE WIGNER DYNAMICS

Following Ref. [8; 12] we consider a fixed number N of iden-
tical particles and introduce in Fock space the statistical density
matrix ρ for the whole system, with Tr(ρ) = 1, (we suppress
the symbol ̂ to refer to operators acting in Fock space) and the
general Hamiltonian [33]

H =
∫

d3r Ψ†(r)
[
− h̄2

2m
∇2 +U(r)

]
Ψ(r)+ (4)

1
2

∫ ∫
dDr dDr′Ψ†(r)Ψ†(r′)V (r,r′)Ψ(r′)Ψ(r)

where m is the particle effective mass, U(r) is the one-body po-
tential, V (r,r′) is a two-body symmetric interaction potential, Ψ
and Ψ† are wave field operators satisfying the anyon relations
(1)-(3) with their properties [30; 33]. Analogously, in coordi-
nate space representation, we define the reduced density matrix
[8; 11] of single particle (here and henceforth we use the sym-
bol ̂ for single particle operators) 〈r|ρ̂|r′〉 = 〈Ψ†(r′)Ψ(r)〉 =
Tr(ρΨ†(r′)Ψ(r)) that in an arbitrary representation takes the
form 〈ν|ρ̂|ν′〉= 〈a†

ν′aν〉= Tr(ρa†
ν′aν) being ν, ν′ single particle

states, aν, a†
ν′ annihilation and creation operators for these states

and 〈· · ·〉 the statistical mean value. Thus, if we consider a one-
particle observable M̂ then an ensemble average will lead to the
expected value Tr(ρ̂M̂ ) =

∫
dDrdDr′〈Ψ†(r′)Ψ(r)〉〈r′|M̂ |r〉.

By using this formalism, we can define the reduced Wigner
function

FW =
1

(2πh̄)D

∫
dDτe−

i
h̄ τ·p〈Ψ†(r− τ/2)Ψ(r+ τ/2)〉 (5)

with
∫

dD pFW = 〈r|ρ̂|r〉= 〈Ψ†(r)Ψ(r)〉= n(r), being n(r) the
quasi-particle numerical density, with Tr(ρ̂) = N.
Accordingly, by considering an operator of single parti-
cle M̂ (r̂, p̂), we look for a function M̃ (r,p) in phase
space that corresponds unambiguously to operator M̂ , in-
troducing the Weyl-Wigner transform W (M̂ ) = M̃ (r,p) =∫

dDτ〈r + τ/2 |M̂ |r − τ/2〉e− i
h̄ τ·p and, analogously, we de-

fine the inverse Wigner transform W −1(M̃ ) = 〈r|M̂ |r′〉 =

(2πh̄)−D ∫
dD pM̃ ((r+ r′)/2,p)e

i
h̄ p·(r−r′) which maps the

function M̃ on phase space into the operator M̂ .
Thus, by using the equation of motion in the Heisenberg

picture ih̄∂tΨ(r) = [Ψ(r),H], the relations (1)-(3) with their
properties[30], and the symmetry of terms V (r,r′), we ob-
tain the equations ih̄∂tΨ(r) = H (r)Ψ(r) and −ih̄∂tΨ†(r) =
Ψ†(r)H (r) with

H (r) =− h̄2

2m
∇2 +U(r)+

∫
dDr′Ψ†(r′)V (r,r′)Ψ(r′). (6)

Starting from these relations, we determine the equation of mo-
tion for the quantity Ψ†(r′)Ψ(r) and by performing its statisti-
cal average we obtain, in the generalized Hartree approximation
[34], the usual evolution-equation for the reduced density ma-
trix of single particle

ih̄
∂
∂t
〈r|ρ̂|r′〉=

∫
dDr′′[〈r|Ĥ |r′′〉〈r′′|ρ̂|r′〉−〈r|ρ̂|r′′〉〈r′′|Ĥ |r′〉] (7)
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being Ĥ = 〈H 〉 the single particle Hamilton operator. Accord-
ingly, following a usual script [8; 11; 34], we can use all pre-
vious relations to obtain the formal full expansion, to all orders
in h̄, of the Wigner equation in the generalized Hartree approx-
imation

∂FW
∂t

+
pk

m
∂FW
∂xk

= (8)

∞

∑
l=0

(i h̄/2)2l

(2l +1)!

[
∂2l+1Ve f f

∂xk1 · · ·∂xk2l+1

][
∂2l+1FW

∂pk1 · · ·∂pk2l+1

]

where all effects of the interactions are entirely contained in
the definition of the effective potential [35], Ve f f (r) = U(r)+∫

dDr′ n(r′)V (r,r′).

QUANTUM ENTROPY AND QMEP FORMALISM

The most used definition of quantum entropy is due to Von
Neumann [36], and is expressed in the form

S =−kB Tr(ρ lnρ) (9)

where ρ is the statistical density matrix operator appropriate to
the physical system under study.

Although the relation (9) does not refer to any special struc-
ture of the system, there are some particular features that must
be satisfied for a system of identical particles. Indeed, a main
drawback of the above definition stems in the fact that it does
not include the statistical effects for a system of identical par-
ticles. To account for the effects of statistics in Eq. (9), it
is mandatory to consider an additional information specifying
whether the density operator ρ, defined in Fock space, is asso-
ciated with an excluson system, fermion or boson like. In order
to take into account ab initio the statistics for a system of identi-
cal particles, we can follow the usual strategy of evaluating the
quantum entropy as the logarithm of the statistical weight for
the whole system.

Thus, to take into account ab initio the FES, we evaluate
the entropy S for a noninteracting system under nonequilibrium
conditions in terms of the occupation numbers [37]

S =−kB ∑
ν

y
{〈Nν〉 ln〈Nν〉+(1−κ〈Nν〉) ln(1−κ〈Nν〉)

−[1+(1−κ)〈Nν〉] ln [1+(1−κ)〈Nν〉]
}

(10)

with 〈Nν〉 = 〈a†
νaν〉/y, y the spin degeneration, and κ the sta-

tistical parameter of fractional statistics. If we consider the
Schrödinger equation of single particle [Ĥ (r)−Eν]ϕν(r) = 0
then, the occupation numbers 〈Nν〉, associated with the ener-
gies Eν, will completely specify the macroscopic state of the
gas. In particular, by using the relation (7) in stationary condi-
tions, both the reduced density matrix and any operator Φ̂(ρ̂) are
diagonal in the base ϕν. Therefore, by introducing as function
of ρ̂ the quantity

Φ̂(ρ̂) = y

{
ρ̂
y

ln
(

ρ̂
y

)
+

(
Î −κ

ρ̂
y

)
ln
(

Î −κ
ρ̂
y

)

−
[

Î +(1−κ)
ρ̂
y

]
ln
[

Î +(1−κ)
ρ̂
y

]}
(11)

with Î the identity, we obtain 〈ν|ρ̂|ν′〉= 〈a†
νaν〉δνν′ and

〈ν|Φ̂(ρ̂)|ν′〉= y
{〈Nν〉 ln〈Nν〉+(1−κ〈Nν〉) ln(1−κ〈Nν〉)−

[1+(1−κ)〈Nν〉] ln [1+(1−κ)〈Nν〉]
}

δνν′ (12)

We remark, that for κ = 1 or κ = 0 the entropy (10) recovers the
usual expressions for fermions or bosons [38], and Eqs. (11)-
(12) become

Φ̂(ρ̂) = ρ̂
{

ln
(

ρ̂
y

)
± y ρ̂−1

(
Î ∓ ρ̂

y

)
ln
(

Î ∓ ρ̂
y

)}
(13)

〈ν|Φ̂(ρ̂)|ν′〉= y
[〈Nν〉 ln〈Nν〉±

(
1∓〈Nν〉

)× (14)
ln
(
1∓〈Nν〉

)]
δνν′

Analogously, under nondegenerate conditions Bose and Fermi
statistics tend to Boltzmann statistics as limit case, and the gen-
eral expressions (11)-(12) reduce to

Φ̂(ρ̂) = ρ̂
{

ln
(

ρ̂
y

)
− Î

}
, (15)

〈ν|Φ̂(ρ̂)|ν′〉= y〈Nν〉
(
ln〈Nν〉−1

)
δνν′ . (16)

Consequently, by generalizing existing definitions [1; 2; 9; 10;
36], the statistics can be implicitly taken into account by defin-
ing, for the whole system, the quantum entropy in terms of the
functional of the reduced density matrix

S(ρ̂) =−kBTr[Φ̂(ρ̂)] (17)

where Φ̂(ρ̂) is given by Eq. (11) for the FES [12], by Eq. (13)
for the Fermi or Bose gases [8; 11], and by Eq. (15) for the
Boltzmann gas.

General formulation of QMEP in phase space

By considering an arbitrary set of single-particle observable
{M̂A} and the corresponding space-phase functions {M̃A}, we
define the macroscopic local moments

MA(r, t) =
∫

dD p M̃A(r,p) FW (r,p, t) (18)

and we use the functional (17) as an informational entropy for
the system. To formulate the QMEP in phase space, we intro-
duce the phase function Φ̃(r,p) = W (Φ̂(ρ̂)), we rewrite Eq.
(17) in the form

S(ρ̂) =− kB

(2πh̄)D

∫ ∫
dD pdDr W (Φ̂(ρ̂)) , (19)

and we search the extremal value of the global entropy subject to
the constraint that the information on the physical system is de-
scribed by a set of local moments {MA(r, t)} with A = 1, · · ·N .
To this purpose, we define the new global functional [8; 10; 11]

S̃ = S−
∫

dDr

{
N

∑
A=1

λ̃A

[∫
dD pM̃A FW −MA

]}
(20)
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being λ̃A(r, t) the nonlocal Lagrange multipliers to be deter-
mined.

By using the general relation (11) introduced for the FES,
one can show that the solution of the constraint δS̃ = 0 implies

ρ̂ = y
{

ŵ(ξ̂)+κ Î
}−1

(21)

where the operator ŵ satisfies the functional relation

[ŵ(ξ̂)]κ[Î + ŵ(ξ̂)]1−κ = ξ̂ (22)

with the operator

ξ̂ = exp

[
W −1

(
N

∑
A=1

λA M̃A

)]
and λA =

λ̃A

kB
(23)

The set of Eqs. (21)-(23) is a first major result. It generalizes
existing results [37], in an operatorial sense, under both thermo-
dynamic equilibrium and nonequilibrium conditions. Besides,
the relations (21)-(23), together with Eqs. (11) and (17), pro-
vide a generalized definition of quantum entropy that includes
nonlocal effects in FES. As a consequence, a nonlocal Wigner-
theory for the system can be formulated by explicitly evaluating
the corresponding reduced Wigner-function

FW = (2πh̄)−D W (ρ̂[λA(r, t),M̃A]). (24)

We note, that by solving the general relation (22) for κ = 1,0
we reobtain the Fermi and Bose statistics, being in this case [8;
11]

ρ̂ = y

{
exp

[
W −1

(
N

∑
A=1

λA(r, t)M̃A

)]
± Î

}−1

(25)

while for the Boltzmann statistics, we obtain the simplified ex-
pression

ρ̂ = y exp

{
W −1

(
−

N

∑
A=1

λA(r, t)M̃A

)}
(26)

We conclude by remarking that, by itself, the QMEP does not
provide any information about the dynamical evolution of the
system, but it offers only a definite procedure to construct a se-
quence of approximations for the nonequilibrium Wigner func-
tion. To obtain a dynamical description, it is necessary: (i) to
know a set of evolution equations for the constraints that in-
clude the microscopic kinetic details, (ii) to determine the La-
grange multipliers in terms of these constraints. In this way, the
QMEP approach implicitly includes all the kinetic details of the
microscopic interactions among particles. Then, by knowing
the functional form (21)-(24) of the reduced Wigner function,
we use Eq. (8) to obtain a set of evolution equations for the
constraints. This set completely represents the QHD model in
which all the constitutive functions are determined starting from
their kinetic expressions. Thus, for a given number of moments
MA, we consider a consistent expansion around h̄ of the Wigner
function. In this way, we separate classical from quantum dy-
namics, and obtain order by order corrections terms.

Moyal expansion of the Wigner function

By using the Moyal formalism [39], one can prove that the
phase function w̃=W (ŵ), the Wigner function FW and, hence,
the moments MA can be expanded in even power of h̄ as

w̃ =
∞

∑
k=0

h̄2kw(2k), FW =
∞

∑
k=0

h̄2kF (2k)
W , MA =

∞

∑
k=0

h̄2kM(2k)
A

To this end, the Lagrange multipliers λA must be determined by
inverting, order by order, the constrains

MA =
1

(2πh̄)D

∫
dD p M̃A W

(
ρ̂[λB(r, t),M̃B]

)
. (27)

where the inversion problem can be solved [8; 11] only by as-
suming that also the Lagrange multipliers admit for an expan-
sion in even powers of h̄

λA = λ(0)
A +

∞

∑
k=1

h̄2k λ(2k)
A , (28)

In this way, by using Eqs. (21)-(24) and (27)-(28), with the
strategy reported in Ref. [8; 11], we succeed in determining the
following expression for the reduced Wigner-function

FW =
ỹ

w(0)(ξ)+κ

{
1+

∞

∑
r=1

h̄2rP2r

}
, (29)

where ỹ= y/(2πh̄)D, ξ= exp(Π) with Π=∑λA M̃A, the nonlo-
cal terms P2r expressed by recursive formulas and the function
w(0) satisfying the usual functional equation

[w(0)(ξ)]κ[1+w(0)(ξ)]1−κ = ξ. (30)

Equation (29) is a second major result. Indeed, making use of
ξ0 = eΠ0 with Π0 = ∑λ(0)

A M̃A, from (29) we obtain, explicitly,
the following first order (r = 1) quantum correction

P2 =

{
2

[w(0)(ξ0)+κ]2

(
ξ0

dw(0)

dξ0

)2

− 1
w(0)(ξ0)+κ

×
[

ξ2
0

d2w(0)

dξ2
0

+ξ0
dw(0)

dξ0

]}
H (2)

2 −
{

6
[w(0)(ξ0)+κ]2

×
[

1
w(0)(ξ0)+κ

(
ξ0

dw(0)

dξ0

)3

−
(

ξ0
dw(0)

dξ0

)2

−

ξ3
0

d2w(0)

dξ2
0

dw(0)

dξ0

]
+

1
w(0)(ξ0)+κ

[
ξ3

0
d3w(0)

dξ3
0

+

3ξ2
0

d2w(0)

dξ2
0

+ξ0
dw(0)

dξ0

]}
H (2)

3 (31)

being the nonlocal functions H (2)
2 and H (2)

3 expressed by

H (2)
3 =− 1

24

[
∂2Π0

∂xi∂x j

∂Π0

∂pi

∂Π0

∂p j
+

∂2Π0

∂pi∂p j

∂Π0

∂xi

∂Π0

∂x j
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− 2
∂2Π0

∂xi∂p j

∂Π0

∂x j

∂Π0

∂pi

]
, (32)

H (2)
2 =−1

8

[
∂2Π0

∂xi∂x j

∂2Π0

∂pi∂p j
− ∂2Π0

∂xi∂p j

∂2Π0

∂x j∂pi

]
. (33)

We remark the following main points:
(i) For κ = 1 and κ = 0 we recover the gradient nonlocal

results obtained for Fermi and Bose gases [8; 11], being in this
case

FW =
ỹ

eΠ ±1

{
1+

∞

∑
r=1

h̄2rP±
2r

}
, (34)

with the first quantum correction (31) that becomes

P±
2 =

{
6
[

eΠ0

eΠ0 ±1

]2

−6
[

eΠ0

eΠ0 ±1

]3

− eΠ0

eΠ0 ±1

}
H (2)

3 +

{
2
[

eΠ0

eΠ0 ±1

]2

− eΠ0

eΠ0 ±1

}
H (2)

2 (35)

Analogously, by considering a quantum Boltzmann gas [8; 11],
we obtain the simplified relations

FW = ỹ e−Π

{
1+

∞

∑
r=1

h̄2rP2r

}
with P2 = H (2)

2 −H (2)
3

(36)
(ii) The functions {H (2)

2 ,H (2)
3 } are in general, expressed in

terms of the quantities {MA,
∂MA
∂xk

, ∂2MA
∂xi∂xk

,p}; in any case, these
functions can be evaluated using different levels of approxima-
tion [40].

(iii) In thermodynamics equilibrium conditions we can write
Π|E = α+βε̃ where ε̃ = mũ2/2, being ũi = ui −λi the peculiar
velocity, ui = pi/m the group velocity, and {α,β,λi} the equi-
librium nonlocal Lagrange multipliers.

EXAMPLES AND APPLICATIONS

As relevant application of the above results, we consider an
excluson gas in isothermal equilibrium conditions. Accord-
ingly, β= (kBT )−1, with T the constant temperature, and within
a general approach all nonlocal effects can be described in terms
of spatial derivatives of concentration n(r, t) and mean velocity
vi(r, t) = n−1 ∫ dD p uiFW . In this case it is necessary to deter-
mine a closed set of balance equations for the variables {n,vi}
used as constraints in the QMEP procedure. Thus, by consider-
ing the kinetic fields M̃A = {1,ui} and using Eq. (8) we obtain
the quantum drift-diffusion model [8; 11]

ṅ+n
∂vk

∂xk
= 0, v̇i +

1
n

∂Mik

∂xk
+

1
m

∂Ve f f

∂xi
= 0, (37)

where the unknown function Mik can be decomposed as

Mik = M〈ik〉+
P
m

δik +O(h̄4) (38)

being the traceless part of tensor

M〈ik〉+O(h̄4) =
∫

dD p ũ〈i ũk〉 FW

and the generalized quantum pressure

P+O(h̄4) =
2
D

∫
dD p ε̃ FW |E

independent constitutive quantities. Then, by making use of
Eqs. (29)-(33), we calculate the variables of local equilibrium
{n,P} and the traceless tensor M〈ik〉, determining the general
relations

ID−1(α,κ) = γ
n

T D/2

{
1− h̄2

12m
1

kB T

[
2

∑
p=1

η(0)
1p Q (1,p)

+η(0)
21 Q (2,1)

]}
+O(h̄4) (39)

P =
2
D

nkB T
ID+1

ID−1

{
1+

h̄2

12m
1

kB T

[
2

∑
p=1

(
η(1)

1p −η(0)
1p

)

×Q (1,p)+
(

η(1)
21 −η(0)

21

)
Q (2,1)

]}
+O(h̄4) (40)

M〈ik〉 =− h̄2

12
n

m2 (D−2)
ID−3

ID−1
Q〈ik〉+O(h̄4) (41)

where γ = [Γ(D/2)/2y] (2πh̄2/mkB)
D/2, the integral func-

tions In(α,κ), the quantities η(s)
i j and the nonlocal functions

{Q (q,p),Q〈ik〉} are explicitly given in Eqs. (55) and (57)-(61)
of Appendix.

By providing generalized differential constraints for the
quantum system under interest, the relations (39)-(41) consti-
tute a third major result. In particular, by solving Eq. (39) with
respect to α, we determine the generalized quantum chemical
potential µ = −αkB T and, by using Eq. (40), we obtain the
generalized quantum equation of state. Thus, by introducing
the usual Bohm quantum potential QB = −(h̄2/2m

√
n)4√

n,
and the vorticity tensor Ti j = (∂vi/∂x j −∂v j/∂xi) the following
simplified analytical cases are analyzed under isothermal equi-
librium condition.

I) High-temperature and/or low-density limits.
First approximation: By using the first term of a suitable series
expansion [41] for the functions In(α,κ), we obtain the com-
pletely nondegenerate case which is independent from κ (Boltz-
mann limit), being I±n (α)≈ (1/2)Γ [(n+1)/2]exp(−α). Thus,
by defining the quantity χ(0) = y−1[(2πh̄2)/(mkB)]

D/2(n/T D/2)
and using Eqs. (39)-(41) we obtain the generalized quantum
expressions

µ = kBT ln
[
χ(0)

]
+

QI
B

3
+O(h̄4), (42)

P = nkBT +nQI
C +O(h̄4), (43)

with the first quantum nonlocal gradient corrections

QI
B = QB − h̄2

16
T 2

ll
kBT

,
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QI
C =− h̄2

12D
1
m

[
∂2 lnn
∂xr∂xr

+
m

kBT
T 2

ll

]

and the first approximation MI
〈ik〉 for the tensor M〈ik〉

MI
〈ik〉 =− h̄2

12
n

m2

[
∂2lnn

∂x〈i∂xk〉
+

m
kBT

T 2
〈ik〉

]
+O(h̄4). (44)

By neglecting vorticity effects (Tik = 0) we recover relations
well-known in literature [8; 11; 42], while, by including
vorticity terms, we re-obtain some recent results for a quantum
Boltzmann gas [43; 44].
Second approximation: By using the first two terms
of the series expansion [41] we obtain I±n (α,κ) ≈
(1/2)Γ [(n+1)/2]exp(−α){1 − (2κ − 1)/2(n+1)/2 exp(−α)},
and by considering Eqs. (39)-(41) and (57)-(61) with a
standard iterative procedure [8; 11], we determine the correct
quantum-statistical second approximation in terms of the
quantity χ(0) ¿ 1, being

µ = kBT ln
[(

1+
2κ−1
2D/2 χ(0)

)
χ(0)

]

+
1
3

(
QI

B +
2κ−1
2D/2 χ(0) QII

B

)
+O(h̄4) (45)

P = nkB T
(

1+
2κ−1
2D/2+1 χ(0)

)

+n
(

QI
C +

2κ−1
2D/2+1 χ(0) QII

C

)
+O(h̄4) (46)

M〈ik〉 = MI
〈ik〉+

2κ−1
2D/2 χ(0) MII

〈ik〉+O(h̄4) (47)

with the quantum nonlocal-gradient second corrections QII
B , QII

C
and MII

〈ik〉 explicitly given in Eqs. (62)-(64) of Appendix.
II) low-temperature limits.

Under strong degeneracy, we make use of an asymptotic expan-
sion [41] for the functions In(α,κ) (with κ ∈ (0,1]).
First approximation: When T → 0 the degeneracy becomes
complete and In(α,κ) ≈ (−α)(n+1)/2/[κ(n + 1)]. Thus, by
defining νE = [4π/(D + 2)](h̄2/m)[(κ/y)Γ(D/2 + 1)]2/D and
µ(0) = [(D+2)/2]νE n2/D, for µ and P we obtain

µ = µ(0)+
D−2

3D
QI

D +O(h̄4), (48)

P = νE n(D+2)/D +nQI
E +O(h̄4), (49)

with the quantum nonlocal-gradient first corrections

QI
D = QB − h̄2

32
D

µ(0)
T 2

ll

QI
E =

h̄2

12D
1
m

[
∂2 lnn
∂xr∂xr

+
2(D−1)

D

(
∂lnn
∂xr

)2

− m
4

D
µ(0)

T 2
ll

]

and the first approximation M I
〈ik〉 for the tensor M〈ik〉

M I
〈ik〉 =− h̄2

12
n

m2

[
∂2lnn

∂x〈i∂xk〉
+

2
D

∂lnn
∂x〈i

∂lnn
∂xk〉

+
m
2

D
µ(0)

T 2
〈ik〉

]
+O(h̄4). (50)

In particular, for κ = 1 (completely degenerate Fermi gas)
and neglecting vorticity effects (Tik = 0), we recover the gra-
dient corrections obtained in the contest of Thomas-Fermi-
Weizsacker theory [8; 11; 46]. For κ 6= 1 and, by including
also the vorticity terms, we generalize these results to excluson
gases, in the low-temperature limit [12].
Second approximation: We consider the first two terms
of the asymptotic expansion in series [41], In(α,κ) ≈
(−α)(n+1)/2/[κ(n+ 1)]{1+(π2/24)κ(n2 − 1)(−α)−2}. Thus,
by using Eqs. (39)-(41) and (57)-(61) with a suitable iterative
procedure [8; 11], we obtain the second quantum-statistical cor-
rect approximation in terms of the quantities (kBT/µ(0))2 ¿ 1,
for µ, P and M〈ik〉

µ = µ(0)
[

1− π2

12
κ(D−2)

(
kBT
µ(0)

)2
]

(51)

+
D−2

3D

[
QI

D +
π2

12
κ
(

kBT
µ(0)

)2

QII
D

]
+O(h̄4) ,

P = νE n(D+2)/D

[
1+

π2

12
κ(D+2)

(
kBT
µ(0)

)2
]

(52)

+n

[
QI

E +
π2

18
κ(D−2)

(
kBT
µ(0)

)2

QII
E

]
+O(h̄4) ,

M〈ik〉 = M I
〈ik〉−

π2

12
κ(D−2)

(
kBT
µ(0)

)2

M II
〈ik〉 , (53)

with the quantum nonlocal-gradient second corrections QII
D , QII

E
and M II

〈ik〉 explicitly given in Eqs. (65)-(67) of Appendix.
In conclusion, by knowing M〈ik〉 and P and using Eq. (38),

the system (37) is explicitly closed. However, by indicating with
{µ(c),P(c)} and {µ(q),P(q)} the classic and the quantum part of
the chemical potential and pressure, as reported respectively in
Eqs. (42)-(43), (45)-(46), (48)-(49) and (51)-(52), the spatial
derivative of Mik can be expressed in the following general form

∂Mik

∂xk
=

1
m

{
− h̄2

12
Tip

∂
∂xk

[(
∂µ(c)

∂n

)−1

Tpk

]

+
∂P(c)

∂xi
+n

∂µ(q)

∂xi

}
+O(h̄4). (54)

The relation above is a fourth major result. Indeed, in all cases
(high and/or low temperature) and for any statistical approxi-
mation (i.e. different order of expansion), Eq. (54) represents
a general closure property [45] for the quantum drift-diffusion
system in Eq. (37).

We remark, that since many years the nonlocal gradient cor-
rections have been extensively tested in real applications such
as: atomic, surface, nuclear physics and electronic properties
of clusters [46]. Analogously, density gradient expansions have
been used to describe capture confinement and tunnelling pro-
cesses for devices in the deca-nanometer regime, by showing
a very good agreement both with available experiments and
other microscopic methods [47]. The novelty of the present
approach allows one to describe the Wigner gradient expan-
sions in the framework of FES, by including also the vorticity.
Consequently, the major results outlined above can have rele-
vant applications in quantum turbulence, quantum fluids, quan-
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tized vortices, nanostructures, nanowires, thin layers and, by in-
cluding also gradient thermal corrections, in graphene quantum
transport [48]. Finally, we stress that Monte Carlo (MC) sim-
ulations and measurements of the thermodynamic properties of
quantum gases, including energy, chemical potential, sound ve-
locity and entropy, have been explored and compared recently
[49]. In some cases these results have been interpreted in the
framework of FES behaviour [50]. Similar measurements and
MC simulations may be thought also in the presence of strong
spatial inhomogeneous conditions and tested within the present
nonlocal FES strategy. Accordingly, the QMEP including frac-
tional exclusion statistics is here asserted as the fundamental
principle of quantum statistical mechanics.
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Appendix

Being w(0)(ξ) solution of (30) (with ξ = eα+x2
) we define the

integrals

In(α,κ) =
∫ +∞

0

xn

w(0)(eα+x2
)+κ

dx, (55)

where, for n < 0, all the integral functions In(α,κ) can be ob-
tained by means of the following general differentiation prop-
erty

∂rIn

∂αr = (−1)r

[
Γ
( n+1

2

)

Γ
( n+1

2 − r
)
]

In−2r. (56)

The functions η(s)
i j , contained in (39)-(40), are given by

η(s)
i j = (−1)i2 j−1 Γ

(D
2 + s+ j−1

)

Γ
(D

2 + s+ i+ j−5
) ID+2(s+i+ j)−11

ID+2s−1
(57)

and all nonlocal terms {Q (q,p), Q〈ik〉} are expressed by

Q (1,1) =− 2
(D−2)2

(
ID−1

ID−3

)2(∂lnn
∂xk

)2

+O(h̄2), (58)

Q (1,2) =
1

D(D−2)
ID−1

ID−3

{[
1− D−4

D−2
ID−1

ID−3

ID−5

ID−3

]

×
(

∂lnn
∂xk

)2

+
∂2lnn
∂xk∂xk

}
+

1
2D

m
kBT

T 2
ll +O(h̄2) , (59)

Q (2,1) =
3

D−2
ID−1

ID−3

{[
1− D−4

D−2
ID−1

ID−3

ID−5

ID−3

]

×
(

∂lnn
∂xk

)2

+
∂2lnn
∂xk∂xk

}
+

3
4

m
kBT

T 2
ll +O(h̄2) , (60)

Q〈i j〉 =
1

D−2
ID−1

ID−3

{[
1− D−4

D−2
ID−1

ID−3

ID−5

ID−3

]

×∂lnn
∂x〈i

∂lnn
∂x j〉

+
∂2lnn

∂x〈i∂x j〉

}
+

1
2

m
kBT

T 2
〈i j〉+O(h̄2). (61)

The quantum gradient corrections terms in (45)-(47) are

QII
B =

h̄2

4m

[
∂2 lnn
∂xr ∂xr

+

(
∂lnn
∂xr

)2

+
m
2

T 2
ll

kBT

]
, (62)

QII
C =

h̄2

12D
1
m

[
2D

∂2 lnn
∂xr∂xr

+(3D−2)
(

∂lnn
∂xr

)2

+(D+4)
m
2

T 2
ll

kBT

]
, (63)

MII
〈ik〉 =− h̄2

12
n

m2

[
∂lnn
∂x〈i

∂lnn
∂x j〉

− m
kBT

T 2
〈ik〉

]
, (64)

The quantum gradient corrections terms in (51)-(53) are

QII
D =− h̄2

2D
1
m

[
2D

∂2 lnn
∂xr ∂xr

+(D−4)
(

∂lnn
∂xr

)2
]

+
h̄2

32
D(D−6)

T 2
ll

µ(0)
, (65)

QII
E =− h̄2

2D
1
m

[
∂2 lnn
∂xr∂xr

+
(D−3)

D

(
∂lnn
∂xr

)2
]
− h̄2

32
T 2

ll

µ(0)
, (66)

M II
〈ik〉 =− h̄2

12
n

m2

[
4
D

∂lnn
∂x〈i

∂lnn
∂x j〉

+
m
2

D
µ(0)

T 2
〈ik〉

]
, (67)
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