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INTRODUCTION 

In classical thermodynamics, the surface of a chemically 
pure liquid is considered as a thermodynamic system, whose 
thermodynamic equilibrium state is uniquely given by the 
surface area, A, and the (absolute) temperature, T. The surface 
tension,  , is then defined by the relation 
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for the work required to change the surface area by the 

infinitesimal amount Ad  in a quasistatic process. It is 

commonly assumed in classical thermodynamics that the 
surface tension is independent of A, i.e. a function of T only, 

with )(T   representing the thermal equation of state of 

the surface. Furthermore, measurements as well as molecular 
models indicate that the value of the surface tension of 
common liquids is nearly independent of the surrounding gas, 
which may be a vapour or an inert gas. 

The entropy, S , of the surface is defined by Gibbs’ 

fundamental equation 
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for a quasistatic process. Since the internal energy, U  , and 

the entropy, S , are quantities of state, Ud  and Sd  have 

to satisfy the conditions for total differentials, leading to the 
following relation between the thermal and caloric quantities 
of state: 
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where u  is the internal energy of the unit surface area, while 

the heat capacity of the unit surface area, c , is defined by the 

relation 
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Since   is a function of T only, the same is true for u  and 

c , i.e. )(Tuu    and )(Tcc   , and from equations (3) 

and (4) one obtains 
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Note that sometimes the temperature dependence of the 

surface tension is approximated by assuming const d/d T . 

This, however, implies a vanishing surface heat capacity 
according to Eq.(5). 

As u is independent of A, Eq.(3) can easily be integrated. 

There appears an unknown function of T, which, however, 
must be a constant in order to be in accord with Eqs.(4) and 

(5). Thus const  AuU , or 
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ABSTRACT 
To deal with negative surface heat capacities that are observed for many liquids, surfaces are treated as non-autonomous 

thermodynamic systems, i.e. together with the liquid that forms the surface. First, a few examples of lumped heat capacities are 
presented. Both quasistatic and non-static area changes of plane liquid films are considered. To provide a criterion for the 
applicability of the quasistatic limit, one-dimensional thermo-capillary waves in liquid films are investigated. Next, heat 
transfer at surfaces is considered. Various forms of the energy equation of surfaces are presented, non-dimensional parameters 
characterizing the relative importance of the surface heat capacity are defined, and a few applications are given. If the surface 
heat capacity is negative, a heat pulse supplied to the surface initially leads to a decrease of the surface temperature. 
Furthermore, negative surface heat capacities give rise to amplifications of small perturbations of the surface temperature. This 
physical instability may also cause numerical instabilities when solving heat conduction problems. Finally, the dependence of 
the surface tension on the radius of nano-droplets serves as a motivation for extending the relevant thermodynamic relations to 
systems with area-dependent surface tension. The implications for Kelvin’s equation for the vapour pressure at small droplets 
are discussed. 
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Here, and in what follows, the subscripts 1 and 2 refer to an 
initial and a final state, respectively. 

Making use of Eq.(3), Gibbs’ fundamental equation, 
Eq.(2), gives 
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Introducing, finally, the entropy of the unit surface area, s , 

according to  AsS  , gives 
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Note that the entropy of a surface can be responsible for 

the irreversibility of evaporation processes [1]. For instance, 
in order to completely evaporate a plane liquid film with 
surface area A under isothermal conditions, a supply of heat is 
required that is smaller than the evaporation enthalpy of the 

liquid by the amount Au , cf. Eq.(3). The entropy change due 

to the disappearance of the surface, however, is not equal to 

TAu / , but only equal to TuAAs /)(   . The 

difference, which represents the work that is necessary to 
generate the surface in an isothermal process, indicates that 
the process of complete evaporation of a plane liquid film, 
being associated with the disappearance of the surface, is 
inherently irreversible. In most cases, however, it turns out 
that the entropy change due to the disappearance of the 
surface is very small in comparison with the entropy change 
due to the evaporation of the liquid. This justifies, in general, 
the idealization of a quasistatic isothermal evaporation process 
as a reversible process.   

Since, according to the second law, the entropy is an 
extensive quantity of state, it follows from Eq.(7) that 
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Note, however, that   and u  vanish as the critical point is 

approached. From Eq.(3) it follows that 0d/d T  for 

cTT  , with cT  denoting the critical temperature. 

While, according to Eq.(9), positive values of Td/d  are 

excluded as a consequence of  the second law, the second law 

does not tell us anything about the sign of Tu d/d   or c . A 

Carnot cycle, for instance, can be constructed for the surface 

as a thermodynamic system irrespective of the sign of c . 

While the isothermal changes of state are characterized by 

const  , the isentropic changes of state satisfy the relation 
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which follows from Eqs. (2) to (4). Observing Eq.(9), one can 
see from Eq.(10) that the isentropic temperature increase in 
the Carnot cycle is associated with a decrease or increase of 

the surface area, depending on whether c  is positive or 

negative, and vice versa for the isentropic temperature 
decrease. But the thermal efficiency of the cycle is smaller 
than 1 in both cases, in accord with the second law.  

In fact, positive as well as negative values of c  have been 

measured, and also calculated on the basis of molecular 
models, for various liquids in certain temperature regimes [1] 
[2] [3]. There is, however, a problem of stability. Let us 
assume that the thermodynamic equilibrium state (T, A) is 

perturbed by a small surface-area change, 0A . According 

to Eq.(10) together with Eq.(9), the system reacts with a 

temperature change 0T  and 0  if 0c . The 

increase of the surface tension will then lead to 0d A , 

driving the surface back to the equilibrium state. The opposite 

is true in the case 0c , leading to the thermodynamic 

instability that is to be expected of any system with a negative 
heat capacity. Thus it is usually argued that the surface must 
not be considered as an “autonomous” system, but rather 
ought to be treated together with the liquid that forms the 
surface [4]. This, however, is sometimes easier said than done. 
The present contribution to the symposium is intended to 
provide a basis for the discussion of problems associated with 
considering the surface as a non-autonomous system. In 
accord with many applications, the discussion will be 
restricted to thermodynamic systems that consist of only one 
chemical substance, i.e. mixtures will not be considered, and 
phase transitions will not be taken into account in what 
follows.  

LUMPED HEAT CAPACITIES 

Isentropic film-area change 

Consider a quasistatic, adiabatic, i.e. isentropic, change of 
the surface area, A, of a plane liquid film of constant mass, m. 
The liquid film is surrounded by an inert gas. The mass 
density of the liquid may be assumed constant, thereby 
allowing to neglect work due to volume changes. Accounting 
for the internal energy of the liquid with isochoric specific 

heat capacity vc , one obtains in the same way as above the 

following relation [1]: 
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Note that Acmcv  represents the “lumped” heat capacities 

of the two parts of the system, i.e. of the bulk liquid and the 
surface. As an approximation, lumped heat capacities are well 
known from the theory of heat transfer, but in the present case 
they result from the quasistatic limit, which implies thermal 
equilibrium between all parts of a system. 

With 2/Am  , where   is the mass density of the 

liquid and   is the thickness of the film with two free 

surfaces, the condition for a positive lumped heat capacity, as 

required for stability reasons, becomes   vcc /2 . 

Estimates on the basis of known properties of various liquids, 
e.g. water (cf. [1], p. 94, and [5])  or argon (cf. [6], p. 12),  
show that a film thickness of the order of the size of molecules 
is sufficient to give a positive lumped heat capacity.  

For film thicknesses that are much larger than the 

molecular size, Ac  may be neglected in comparison with 

vmc , and upon integration one obtains from Eq.(11) the 

following relation between the area change 12 AA   and the 

temperature change from 1T  to 2T : 
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or, using Eq.(3), 
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Equation (13) shows that the internal energy of the surface has 
to be taken into account, even if the heat capacity of the 
surface is negligible. This, perhaps surprising, result can be 

understood by considering the energy balance. As u  and   

are of the same order of magnitude, cf. Eq.(3), the 
contribution of the surface-energy change to the energy 

balance, i.e. Au d , is of the same order of magnitude as the 

work performed by the surface tension, i.e. Ad  . 

 

Non-static film area change 

Consider a plane liquid film that is stretched in a 
rectangular frame with a frictionless movable bar of length L 
forming one side of the frame. As before, the mass and the 
mass density of the film are assumed constant. In addition, the 

isochoric specific heat capacity, vc , of the liquid is also 

assumed constant. In the initial state (surface area 1A , 

temperature 1T ) the film is in thermodynamic equilibrium. 

This implies that the force acting on the bar is LF 21  . 

(The coefficient 2 is due to the fact that the film has two 
surfaces.) At a certain moment, the force acting on the bar 

suddenly changes to the value 2F , which is then kept constant. 

Heat exchange with the surroundings may be neglected, i.e. 
the change of state is non-static, but adiabatic. The new state 

of thermodynamic equilibrium (surface area 2A , temperature 

2T ) is to be determined [1]. 

Since thermodynamic equilibrium implies mechanical 
equilibrium, the surface tension in the final state is 

LF 2/22  , and the temperature 2T  can be determined by 

inverting the thermal equation of state of the surface, i.e. 

)(T  . As the force acting on the system is constant, the 

work performed in the non-static process is 
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and the energy balance, together with Eq.(6), gives 
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Estimates for common liquids show that, with the 

exception of extremely thin films, the term with the coefficient 

1A  in Eq.(15) is negligibly small, but the internal energy of 

the surface remains of importance via the term 2u . As in the 

case of the isentropic process considered above, the negligible 
term is associated with the (positive or negative) surface heat 
capacity, as can be seen by making use of Eq.(3) and rewriting 

the term )( 21  u  as 

 

222121 )d/d()( TTuuu    ,  (16) 

with )( 21121 TTcuu    for approximately constant 

surface heat capacity.  
   

One-dimensional thermo-capillary waves 
 

To justify the assumption of a quasistatic change of state, 
the rate of change of the surface area of the liquid film must 
be sufficiently small to allow the equalization of perturbations 
at any point in time. For the present treatment it suffices to 
consider a plane liquid film that is in thermodynamic 
equilibrium and at rest in the base state (subscript 0). Small 

perturbations of the film thickness,  , and temperature, T, 

according to 10   ,  10 TTT  , with 1 , are 

associated with small film velocities, 1v , in the direction of 

the longitudinal coordinate, x. Neclecting viscosity, the net 
force acting on a film element per length is 

xTTx  /)(/  , with dT/d  . With regard to the 

energy balance, we assume local thermodynamic equilibrium 
and neglect heat transfer to the surroundings as well as heat 
conduction in the film in longitudinal direction. This allows us 
to apply Eq.(11), which describes quasistatic adiabatic 
changes of state. For unsteady one-dimensional flow of an 
incompressible liquid in a thin film, the linearized equations 
of continuity, momentum and energy can then be written as 
follows: 
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Eliminating 1  and 1v  from Eqs.(17)-(19), one obtains the 

linear wave equation 
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with 
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Since 0)( 0  T  according to the second law, cf. above, the 

minus sign has been chosen for the square root in Eq. (22). 

0C  can be identified as the wave speed, i.e. the propagation 

speed of small perturbations.  
To justify the idealization of a quasistatic change of state of 

a film that is stretched in one direction, the wave speed must 
be much larger than the velocity of the film, i.e. 

10 vvC  . Note that the wave speed increases with 

180



 

decreasing film thickness, 0 . The lumped heat capacity per 

surface area, )( 0  ccv  , appears in the denominator on the 

right-hand side of Eq.(21). If the lumped heat capacity were 

negative, 2
0C  would be negative according to Eq.(21), and 

Eq.(20) would loose the character of a wave equation and 
become of elliptic type. 

To give an idea about the orders of magnitude, a wave 
speed of about 1 m/s is obtained from Eq.(21) for a film of 
water at 300 K with a thickness of 50 nm.  

 

HEAT TRANSFER AT SURFACES 
 

Energy equation of a moving surface 

If the energy balance of the surface is disregarded, as it is 
often done - though not always with sufficient justification - in 
problems of fluid mechanics and heat transfer, the 
temperature-dependent surface tension appears only in the 
momentum equation. Marangoni convection is a well-known 
example. In an attempt to clarify the effect of the internal 
energy, or the heat capacity, of the surface on the heat transfer 
at the surface, the energy balance of the surface is investigated 
in what follows. Local thermodynamic equilibrium will be 
assumed. It allows applying the relations given in the 
Introduction, locally and at any moment of time, as if any 
surface element or any volume element were in 
thermodynamic equilibrium. In particular, there is no 
temperature jump at the surface. In the interest of simplifying 
the presentation, the discussion will be restricted to one-
dimensional motion of the surface, but the generalization to 
more dimensions will be obvious, cf. also the survey [7]. 

Consider a surface element of length dx, with x being the 
tangential coordinate at the surface, while the coordinate 
normal to the surface is denoted by z.  The surface element is 
assumed to be fixed in space. The liquid is assumed to be 
surrounded by an inert gas, i.e. condensation and evaporation 
are disregarded. For a liquid that moves with the tangential 

velocity component xv  in x-direction, the energy balance of 

the surface may be written as 
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where q  is the heat flux in z-direction,  is the shear stress at 

one side of the surface, and the symbol    stands for the 

difference across the surface (“jump” at the surface). The 
terms in Eq.(23) have the following physical meaning (in this 
order, from left to right): Rate of change of internal energy; 
net convective flux of internal energy; net work done by the 
surface tension due to moving the surface into, and out of, the 
surface element; net heat flux; net work done by the shear 
stresses at both sides of the surface. 

Equation (23) may be re-written in various ways. A rather 
nice formulation is obtained by introducing the surface heat 
capacity according to Eq.(5), and, furthermore, the surface 

enthalpy (per surface area), h , according to 
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Making then use of the force balance at the surface, i.e. 
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one finally obtains that at the surface the following boundary 
condition has to be satisfied: 
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where k is the thermal conductivity of the fluid on the 
respective side of the surface.  
 To check the analysis for self-consistency, Eq.(26) is 
applied to the quasistatic adiabatic, i.e. isentropic, change of 
the area of a plane surface in a rectangular frame with the bar 

on one side moving in x-direction. With )(tTT   and 

  0q , Eq.(26) shows that the velocity is a linear function 

of x, which gives tAAxvx d/d )/( . With TTh d/d    

according to Eq.(24), one obtains from Eq.(26) the isentropic 
relation, Eq.(10). 
 Equation (26) shows that a material (substantial) time 
derivative of the surface temperature is, in general, associated 
with a jump in the normal component of the heat flux at the 
surface. For steady flow, the effects of the surface energy on 
the heat flux jump are characterized by the following two non-
dimensional parameters: 
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****

2 / TkvhN x ,    (28) 

 

where *  denotes reference quantities. In the case of time-
dependent processes, there is the additional non-dimensional 
parameter 
 

****
3 /|| tkLcN   ,    (29) 

 

defined in terms of a characteristic length, *L , and a 

characteristic time, *t . If 1N  and 2N  are either irrelevant 

(liquid at rest) or much smaller than 1, and if, in addition, 3N  

is either irrelevant (stationary state, steady flow) or much 
smaller than 1, the heat flux jump at the surface is negligible 
as far as the bulk of the liquid is concerned. In a very thin 
boundary layer at the surface, however, the solution may be 
substantially affected by the small heat flux jump. To give an 
example, the following problem is considered. 

Heat pulse at surface 

Consider the horizontal surface of a semi-infinite body of 

liquid. The liquid is at rest. In the initial state ( 0t ) the 

temperature of the liquid is independent of the downward-

pointing vertical coordinate, z, i.e. const 0 TT . In the time 

interval e0 tt   a constant heat flux 0q  is supplied from the 

surroundings to the surface, e.g. by radiative heat transfer. 
Afterwards, the surface is adiabatic. Assuming constant 
thermal conductivity, k, it is convenient to formulate the 
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problem in terms of the heat flux, zTkq  /  , as the 

dependent variable. The heat diffusion equation gives 
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where   is the thermal diffusivity, which is assumed to be 

constant, like all other material properties of the liquid. 
Equation (30) is to be solved subject to the initial condition 
 

0q   for  0  ,0  zt ,    (31) 

 
and the boundary conditions 
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with the parameter l defined by 
 

pccl  /  ,     (35) 

 

where pc  is the isobaric specific heat capacity of the liquid. 

The parameter l has the physical dimension of a length, but, 

depending on the value of c , it may be positive, zero or 

negative. Based on available data [1]-[3], [5],[6], || l  is of the 

order of nanometers. Note that the second term on the left-
hand sides of Eqs.(33) and (34), which follow from Eq.(26) 

with 0xv  and the heat diffusion equation in terms of T, 

represents the heat-flux jump at the surface due to the surface 
heat capacity. 

As it happens, the solution of the heat diffusion equation 
with initial and boundary conditions of the form of Eqs.(31)-
(34) is given in [8], §2.8, case (i), though the problem is a 
different one. In the present notation the solution reads 
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Of particular interest is, of course, the surface temperature, 

T . With the solution according to Eqs.(36)-(38), one obtains 

from Eq.(26) the following differential equations for T : 
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A plot of the function 0G  can be found in [9], Fig. 7.1. 

 Equations (39)-(41) can easily be integrated numerically, 
but a qualitative discussion of the solution suffices for the 
present purpose. First of all, the influence of the surface heat 

transfer is remarkable. If 0c , the heat supply at the 

surface gives rise to a decrease of the surface temperature for 

times of the order of /* 2lt  . For 0c , */ tt , 

however, Eq.(39) gives 
 

tc

q

t

T

p 

 0~
d

d 
 ,    (42) 

 
i.e. the surface temperature changes in the classical manner as 
if there were no surface heat capacity. Since l is very small, cf. 

above, the time scale *t  is also very small, but well within the 

range of presently available pulsed lasers. Thus one could 
envision the application of picosecond lasers to reduce the 
surface temperature step by step. The analysis may be based 
on Duhamel’s theorem, but cannot be given here. 

Associated with the decrease of the surface temperature is, 
of course, a decrease of the temperature in the liquid near the 
surface. It follows from the solution for the heat flux, i.e. 
Eq.(36) together with Eq.(38), that the decrease is restricted to 
a boundary layer whose thickness is as small as || l . For 

||/ lz  the classical result, represented by the first term 

on the right-hand side of Eq.(38), is obtained even for times as 

small as *t . 

Instability due to negative surface heat capacity 

When heat is supplied locally to a surface with negative 
heat capacity, the surface temperature will decrease, at least 
initially, in the region of heat supply. The temperature 
gradient in the liquid will then give rise to a heat flow from 
the bulk of the liquid to the surface, thereby enhancing the 
decrease of the surface temperature. Obviously, this effect 
may lead to an instability of the initial state. The following 
linear perturbation analysis is intended to provide a 
quantitative description of the instability. For non-linear 
phenomena far from thermodynamic equilibrium cf. [4]. 

As in preceding section, a semi-infinite body of liquid with 
horizontal surface is considered. However, it is now assumed 
that there is no heat transfer from the surroundings to the 
surface. Furthermore, it is assumed that the temperature in the 
liquid may depend not only on the vertical coordinate, z, but 
also on the horizontal coordinate, x. Thermo-convective 
motion of the liquid will be neglected in the energy balance, 
which, therefore, reduces to the heat diffusion equation 
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with the boundary conditions 
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
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   for  0z  ;   (44) 

 

const  TT   for  z  .   (45) 

 
Of interest is now the evolution of spatially periodic 

perturbations of the thermodynamic equilibrium state, which 

is characterized by the uniform temperature TT . Thus 

solutions of the form 
 

)i(exp )(/)( xtzfTTT       (46) 

 
are sought, with the amplification rate,  , and the wave 

number,  , being taken as real numbers. Of course, the wave 
number is always positive, whereas the amplification rate may 
be positive (amplified perturbations), zero (stationary 
perturbations), or negative (damped perturbations).  
 Eq.(46) satisfies the heat diffusion equation, Eq.(43), 
together with the boundary condition at infinity, Eq.(45), if 
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while the boundary condition at the surface, Eq.(44), gives 
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with the non-dimensional wave number 
 

pcclK  /       (49) 

 

and the parameter l according to Eq.(35). For 0K , i.e. the 

surface heat capacity not taken into account, the classical 

result ß  is obtained, of course. But note that Eq.(48) 

gives the classical result in the limit  0K , whereas the 

solution diverges as  0K  for a fixed value of l.  

 Equation (47) shows that the penetration depth of the 

perturbations is of the order of  , with 
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 Equations (48) and (51) allow the following conclusions 
with regard to the stability of the state of thermodynamic 
equilibrium of the system consisting of the liquid and the 
surface. If the surface heat capacity is negative, K is also 
negative, while   is positive, i.e. the perturbations increase 

with time, and the state of thermodynamic equilibrium is 
unstable. However, the perturbations are confined to a 

boundary layer, whose thickness is of the order of || l , i.e. 

nanometers for common liquids, cf. above. In the case of 

amplified perturbations, the maximum value || max l  of the 

penetration depth is obtained for  0K , i.e. in the limit of 

long waves in the scale of || l . For fixed values of c , with 

0c , the amplification rate attains the minimum value 

2
min / l   in this long-wave limit. In the limit of very short 

waves, on the other hand, 0)/(1~ ||/ Kl  and 

2/|| ~ lK  ||/ l  as K . 

 As the unstable perturbations are confined to a very thin 
layer near the surface, the physical relevance may be seen as 
rather limited. For numerical solutions of heat transfer 
problems, however, the instabilities may cause severe 
problems, in particular, when high resolution is desirable, or 
required, for small systems. It may be necessary to introduce a 
boundary layer at the surface in order to deal properly with the 
(numerical) stability problem. 

NANO-DROPLETS: AREA-DEPENDENT SURFACE 

TENSION
 

 

It has been observed that the surface tension of very small 
droplets depends not only on the temperature, but also on the 
radius of the droplet, cf. [10], pp. 112 and 126-130, and [11], 
[12]. For constant temperature, the surface tension decreases, 
in general, with decreasing droplet radius. In view of recent 
discussions on the applicability of macroscopic thermo-
dynamics to nano-droplets [13], it is investigated in what 
follows whether, and perhaps how, the dependence of the 
surface tension on the radius affects the classical 
thermodynamic relations given in the Introduction. As the 
surface tension is then no longer only a local quantity of the 
surface, but also depends on properties of the bulk of the 
liquid, this is another example of considering the surface as a 
non-autonomous system. 

For the present purpose it is convenient to introduce the 
surface area instead of the droplet radius as an independent 
variable. Thus the thermal equation of state of the surface is 
formally written as 

 

),( AT  .     (52) 

  
Gibbs’ fundamental equation, Eq.(2), remains valid, of 

course, but in Eq.(3) the ordinary derivative is to be replaced 
by the partial derivative to obtain 
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with ),( ATuu   . Similarly, Eq.(4) remains valid as the 

definition of the surface heat capacity, but Eq.(5) is to be 
replaced by 
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with ),( ATcc   . 

The entropy of the unit surface, s , is defined as  
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Based on this definition, the classical relation Eq.(8) is re-
obtained, apart from the partial derivative instead of the 
ordinary one, i.e. 
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In addition, the classical relation  
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is also re-obtained from Eq.(3).  

There are further thermodynamic relations that follow from 
Gibbs’ fundamental equation together with the integrability 
conditions for the differentials of quantities of state. In 
particular, one re-obtains the classical “potential” relations for 

the surface internal energy, U , and the surface free energy, 

 TSUF  , i.e. 
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and 
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as well as Maxwell’s relations 
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 S  indicates a partial derivative with S  kept constant. 

Based on the thermodynamic relations given above, the 

problem of the vapour pressure, vp , at a small droplet in 

thermodynamic equilibrium can be re-considered, e.g. 
following [14], §22. To be consistent, the surface area of the 
droplet, A, is related to the mole number, n, of the droplet 

according to the relation dVnA l /
~

4d/d  , where lV
~

 is the 

molar volume of the liquid, and d is the droplet diameter. It 
turns out that the classical result, i.e. the famous Kelvin 
equation 
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4

ln
s

v 
  ,    (62) 

 

is re-obtained, with R
~

 as the universal (molar) gas constant, 

and sp  as the saturation pressure at a plane surface. This is 

not in accord, however, with the results of molecular 

simulations for droplets with diameters of the order of a few 
nanometers, cf. [10], p. 127, although Laplace’s equation 
 

dppl /4v  ,    (63) 

 
which follows from mechanical equilibrium, has been found to 
be in good agreement ([10], pp. 112 and 126). Preliminary 
investigations by the present author seem to indicate that the 
assumption of constant density of the liquid, which is – often 
implicitly – made in deriving Kelvin’s equation, may be the 
reason for the discrepancies, but a further discussion of that 
question is beyond the scope of the present paper. 
  

CONCLUSIONS 

 
 Treating surfaces as non-autonomous thermodynamic 

systems leads to interesting and sometimes strange results. 
The change of state of a liquid film that is sufficiently thin to 
allow neglecting the – possibly negative – surface heat 
capacity is, nevertheless, affected by the internal energy of the 
surface. Short pulses of heat supplied to a surface with 
negative surface heat capacity give rise to a decrease of the 
surface temperature and of the temperature in a boundary 
layer of liquid near the surface. For the case of no heat supply 
from the surroundings, thermal instabilities in the boundary 
layer are predicted for negative surface heat capacities. It is 
true that the boundary layers are of the order of nanometers, 
i.e. of the molecular size,  for common liquids, but the macro-
scopic description of nano-systems has recently found much 
interest, cf. [15] for an example. Furthermore, numerical 
solutions of the macroscopic equations of fluid mechanics and 
heat transfer may face difficulties associated with those 
instabilities. 

As far as the dependence of surface tension on the radius of 
nano-droplets is concerned, treating the surface as a non-
autonomous system, but retaining the other assumptions, has 
not lead to a generalization of Kelvin’s equation for the 
vapour pressure. Thus other generalizations, in particular 
accounting for the compressibility of the liquid, are desirable.       
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NOMENCLATURE 

Symbol         Quantity    SI Unit 
 
 A         Surface area    m² 

pc          Isobaric specific heat capacity        J/kgK 

vc          Isochoric specific heat capacity      J/kgK 

c          Surface heat capacity                J/m²K 

 d         Droplet diameter   m 
 f         Auxiliary function   - 
 F         Force    N 

F          Free energy of surface  J 

 G         Auxiliary function   - 
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h          Enthalpy of unit surface area  J/m² 

 i                   Imaginary unit   - 
 k         Thermal conductivity               W/mK 
 L         Length    m 
 l         Parameter, see Eq.(35)  m 
 m         Mass    kg 
 n         Mole number             mole/m³ 
 p         Pressure    N/m² 

q          Heat flux    W/m² 

R
~

         Universal gas constant  J/mole K 

S          Surface entropy   J/K 

s          Entropy of unit surface area            J/Km² 

T         Absolute temperature  K 

cT         Critical temperature   K 

 t        Time    s 

U         Internal energy of surface  J 

u         Internal energy of unit surface area J/m² 

V
~

        Molar volume   m³/mole 

 v        Velocity of liquid or surface  m/s 
W        Work    J 
x,  z        Spatial coordinates   m 
 
Greek symbols 
         Thermal diffusivity   m²/s 

         Amplification rate   1/s 

         Thickness of liquid film,  

        or penetration depth    m 

         Wave number   1/m 
         Mass density                 kg/m³ 

         Surface tension   N/m 

         Shear stress    N/m² 

 
Subscripts 
e        End of time interval 
l        Liquid 
v        Vapour 
s        Saturation 
x        Component in x-direction 
0        Base state, or at surface 
1        Initial state, or perturbation 
2        Final state 
         Surface 

         At infinity 
 
 
 
 
 

Superscript 
*         Reference quantity 
 
Other symbol 

          Difference across surface 
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