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ABSTRACT
Biological molecular machines are proteins that operate under isothermal conditions hence are referred to as free energy transduc-
ers. They can be formally considered as enzymes that simultaneously catalyze two chemical reactions: the free energy-donating
(input) reaction and the free energy-accepting (output) one. It is now well established that most if not all enzymatic proteins
display a slow stochastic dynamics of transitions between a variety of conformational substates composing their native state. A
hypothesis is stated that, like higher level biological networks: the protein interaction network and the metabolic network, the
protein conformational transition networks have evolved in a process of self-organized criticality. All three classes of networks
are scale-free and, probably, display a transition from the fractal organization in a small length scale to the small-world orga-
nization in the large length scale. Good mathematical models of such networks are stochastic critical branching trees extended
by long-range shortcuts. The degree of coupling between the output and the input reaction fluxes have been studied both the-
oretically and by means of the Monte Carlo simulations on model networks. For single input and output gates the degree of
coupling values cannot exceed unity. Study simulations of random walks on several model networks involving more extended
gates indicate that the case of the degree of coupling with the value higher than one is realized on the mentioned above critical
branching trees extended by long-range shortcuts.

ENZYMATIC PROTEINS – CHANGE OF THE FUNDA-
MENTAL PARADIGM

Proteins are linear polymers of amino acids arranged in a
sequence determined by genes. Since the origin of molecular
biology in the 1950s, a paradigm has been commonly accepted,
expressed shortly in two successive implications:

sequence → structure → function.

It assumes implicitly that the dynamics of native proteins re-
duces to simple normal vibrations about a single well defined
conformational state referred to as the ’tertiary structure’ of the
protein. For et least two decades, however, it becomes more
and more clear that not only structure but also more complex
dynamics determine the function of proteins thus the paradigm
has to be changed onto [1]

sequence → structure & dynamics → function.

Two classes of experiments imply directly that besides fast vi-
brations enzymatic proteins display also a much slower stochas-
tic dynamics of transitions between a variety of conformational
substates composing their native state. The first class includes
observations of the non-exponential initial stages of reactions
after special preparation of an initial microscopic state in a sta-
tistical ensemble of biomolecules by, e.g., the laser pulse [2; 3].
The second class concerns statistics of the dichotomous noise
generated by single biomolecules in various processes, which
often displays a non-exponential time course [4; 5]. The even
more convincing proof if the conformational transition dynam-
ics of simple native proteins has been afforded by early molec-
ular dynamics simulations [6; 7]. Research of biomolecular dy-
namics is being developed faster and faster and today, even in
the case of small, water-soluble proteins, one speaks about the

’native state ensemble’ rather than a single native state, and for
very small proteins or protein fragments trials to reconstruct the
actual networks of conformational transitions are realized [8].

Because of the slow character of the conformational dynam-
ics, both chemical and conformational transitions in an enzy-
matic protein have to be treated on an equal footing [9] and
jointly described by a system of coupled master equations

ṗl(t) = ∑
l′
[wll′ pl′(t)−wl′l pl(t)] , (1)

determining time variation of the occupation probabilities pl(t)
of the individual protein’s substates (Fig. 1). In Eq. (1), wl′l
is the transition probability per unit time from the substate l
to l′ and the dot denotes the time derivative. The conforma-
tional transition probabilities satisfy the detailed balance condi-
tion which, however, can be broken for the chemical transition
probabilities controlled by concentrations of the enzyme sub-
strates. Eqs. (1) are to be treated as a model of microscopic dy-
namics in the stochastic theory of reaction rates [10; 11] the ori-
gins of which go back to the Smoluchowski theory of diffusion-
controlled coagulation and the Kramers one-dimensional theory
of reactions in the overdamped limit. It is the stochastic theory
of reaction rates and not the conventional transition state theory
that has to be applied in the description and interpretation of
biochemical processes [9; 12].

Contrary to the transition state theory the stochastic the-
ory of reaction rates takes seriously into account the very pro-
cess of reaching the partial thermodynamic equilibrium in non-
chemical degrees of freedom of the system described. In the
closed reactor, a possibility of a subsequent chemical trans-
formation of an enzyme to proceed before the conformational
equilibrium have been reached in the actual chemical state re-
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Figure 1. (a) Exemplifying realization of the model intramolecular dy-
namics underlying the irreversible reaction M → product. Chemical
state M is composed of many substates (the white and black circles)
and the dynamics involves purely stochastic transitions between these
states (the arrows). Chemical state product is represented by a single,
totally absorbing ’limbo’ state ∗. The reaction is realized through transi-
tions between distinguished substates in M, jointly forming what is called
the transition state R‡ (the black circles) and the limbo ∗. (b) Particular
case of the irreversible reaction when the transition state is reduced to
a single ’gate’ substate 0. The shaded box represents a network of an
arbitrary number of sites and the direct transitions between them.

sults in the presence of a transient non-exponential stage of the
process and in an essential dynamical correction to the reaction
rate constant describing the following exponential stage. In the
open reactor under stationary conditions (the concentrations of
reactants and products of the reaction kept constant), the gen-
eral situation is more complex but for reactions gated by single
transition conformational substates (Fig. 1(b)) a simple analyt-
ical theory was proposed [9; 13]. A consequence of the slow
conformational transition dynamics is that the steady-state ki-
netics, like the transient stage kinetics, cannot be described in
terms of the usual rate constants. This possibility was suggested
forty years ago by Blumenfeld [14]. More later on, we have
shown that adequate physical quantities that should be used are
the mean first-passage times between distinguished transition
substates [9; 13]. The subject of the present paper is an ap-
plication of this formalism to elucidate the action of biological
molecular machines.

BIOLOGICAL MACHINES AS CHEMO-CHEMICAL
FREE ENERGY TRANSDUCERS

The primary purpose of thermodynamics, born in the first
half of the 19th century, was to explain the action of heat en-
gines. The processes they are involved in are practically re-
versible and proceed in varying temperatures. As a conse-
quence, thermodynamics being the subject of the school and
academic teaching, still deals mainly with equilibrium pro-
cesses and changes of temperature. Meanwhile, biological ma-
chines as well as many other contemporary machines act irre-
versibly, with considerable dissipation, but at constant temper-
ature. Machines that operate under the condition T = const.
are free energy transducers [12]. A good example are enzymes
kinases that catalyze simultaneously two reactions, the ATP hy-
drolysis and a substrate phosphorylation.

From a theoretical point of view, it is convenient to treat
all biomolecular machines, also pumps and motors, as chemo-
chemical machines [12], enzymes that simultaneously catalyze
two chemical reactions: the free energy-donating reaction and
the free energy-accepting one. Under isothermal conditions, all
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Figure 2. Development of kinetic schemes of the chemo-chemical ma-
chine. (a) Principle of the chemo-chemical free energy transduction.
Due to proceeding on the same enzyme, reaction R1 ↔ P1 drives re-
action R2 ↔ P2 against its conjugate force determined by steady state
concentrations of the reactant and the product. (b) Assumption of a
possible short circuit or slippage of the input vs. output reaction. (c) As-
sumption of both the free energy-donating and the free energy-accepting
reaction to participate in a kinetic scheme like the one shown in Fig. 1(b).
(d) Further generalization of the kinetic scheme to involve many input
and output of gates.

chemical reactions proceed due to thermal fluctuations: a free
energy needed for their realization is borrowed from the envi-
ronment and then returned to it. In fact, the biological molecu-
lar machines are biased Maxwell’s demons: their mechanical or
electrical elements are ’soft’ and perform work at the expense of
thermal fluctuations [15; 16; 17]. Of course, Maxwell’s demon
can operate only out of equilibrium and it is a task of the free
energy-donating reaction to secure such conditions.

The principle of action of the chemo-chemical machine is
simple [18]. It is a protein enzyme that catalyzes simultane-
ously two chemical reactions (Fig. 2(a)). Separately, each reac-
tion takes place in the direction determined by the second law of
thermodynamics, i.e., the condition that energy dissipated, de-
termined by the product of flux and force, is positive. However,
if both reactions take place simultaneously in a common cycle,
they must proceed in the same direction and the direction of the
first reaction can force a change of direction of the second. As
a consequence, the first reaction transfers a part of its free en-
ergy recovered from dissipation performing work on the second
reaction.

In formal terms, the chemo-chemical machine couples two
unimolecular reactions: the free energy-donating reaction R1 ↔
P1 and the free energy-accepting reaction R2 ↔ P2. Bimolecular
reactions can be considered as effective unimolecular reactions
on assuming a constant concentration of one of the reagents, e.g.
ADP in the case of ATP hydrolysis. The input and output fluxes
Ji (i = 1 and 2, respectively) and the conjugate thermodynamic
forces Ai are defined as [18]

Ji =
d[Pi]/dt
[E]0

(2)

and

βAi = lnKi
[Ri]

[Pi]
, Ki ≡

[Pi]
eq

[Ri]eq . (3)
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Here, symbols of the chemical compounds in the square brack-
ets denote the molar concentrations in the steady state (no su-
perscript) or in the equilibrium (the superscript eq). [E]0 is the
total concentration of the enzyme and β is proportional to the re-
ciprocal temperature, β ≡ (kBT )−1, where kB is the Boltzmann
constant. The flux-force dependence is one-to-one only if some
constraints are put on the concentrations [Ri] and [Pi] for each
i. There are two possibilities. Either the concentration of one
species, say Ri, in the open reactor under consideration is kept
constant: [Ri] = const., or is such the total concentration of the
enzyme substrate: [Ri]+ [Pi] = const.

The free energy transduction is realized if the product J2A2,
representing the output power, is negative. The efficiency of the
machine is the ratio

η =−J2A2/J1A1 (4)

of the output power to the input power. In general, the degree of
coupling

ε = J2/J1 , (5)

being itself a function of the forces A1 and A2, can be both pos-
itive and negative.

Usually, the assumption of tight coupling between the both
reactions is made (Fig. 2(a)). It states that the flux of the first
reaction equals the flux of the second, J1 = J2 thus ε = 1. How-
ever, an additional reaction can take place between the two
states M′ and M′′ of the enzyme-substrates complex (Fig. 2(b)).
The latter reaction can be considered either as a short circuit,
the non-productive realization of the first reaction not driving
the second reaction, or a slippage, the realization of the second
reaction in the direction dictated by its conjugate force.

The multiconformational counterpart of the scheme in
Fig. 2(b) is shown in Fig. 2(c). Here, like in the scheme in
Fig. 1(b), a network of conformational transitions within the
enzyme-substrates complex is represented by the gray box and
the assumption of gating by single pairs of transition confor-
mational substates is made. In Ref. [13], using a technique of
summing up the directional diagrams proposed by Terell L. Hill
[18] who formalized an old idea of Gustav Kirchhoff, we shown
how the input and the output reaction fluxes are related to the
mean first-passage times between the distinguished substates.

For all the schemes shown in Figs. 2(a-c), the flux-force de-
pendence for the two coupled reactions has a general functional
form [13]:

Ji =
1− e−β(Ai−Ast

i )

J−1
+i + J−1

−i e−β(Ai−Ast
i )+ J−1

0i (Ki + eβAi)−1
. (6)

The parameters J+i, J−i, J0i and Ast
i depend on the other force

and are determined by a particular kinetic scheme. Ast
i have

the meaning of stalling forces for which the fluxes Ji vanish:
Ji(Ast

i ) = 0. The dependence Ji(Ai) is strictly increasing with
an inflection point, determined by J0i, and two asymptotes, J+i
and J−i (Fig. 3). The asymptotic fluxes J+i and J−i display the
Michaelis-Menten dependence on the substrate concentrations.
Because of high complexity, we refrained from giving any for-
mulas for the turnover numbers and the apparent dissociation
constants, but simpler formulas for the degree of coupling ε and
the stalling forces Ast

i are given and discussed in Ref. [8].
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Figure 3. Character of the functional dependence of the output flux Ji
versus force Ai determined by Eq. (6). Only when the stalling force
Ast

i is negative does free energy transduction take place. The Ji(Ai)
dependence in this range is marked with a bold line.

In Ref. [8], we have compared theoretical results with Monte
Carlo simulations on several model networks. Fig. 4 shows an
example for 5-dimensional hypercube. It is seen that even for
such simple and small network of 32 nodes large fluctuations
make determination of the input and the output fluxes in 104

iteration steps impossible. Only the increase of the number of
the iteration steps to 109 enables one to determine the fluxes
with the error lower than 0.3%. Preliminary estimations indicate
that the result is in a good agreement with the Gallavotti-Cohen
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Figure 4. Simulated time course of the net number of the input (R1 ↔
P1) and the output (R2 ↔ P2) external transitions for the 5-dimensional
hypercube with gates and parameters described in text. (a) Snapshots
made every step. (b) Snapshots made every 105 steps.
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fluctuation theorem [19]

p(∑i βAi j+i )
p(−∑i βAi j−i )

= exp(−∑
i

βAi jit) , (7)

which can be equivalently rewritten as

⟨exp(−∑
i

βAiJit)⟩= 1 . (8)

Above, Ji = J+
i −J −

i denotes the random variable of the i-th net
flux being the difference of the forward and backward compo-
nents J+

i and J−
i , respectively, and ji = j+i − j−i is the value of

that flux.

NETWORKS OF CONFORMATIONAL TRANSITIONS
AND CRITICAL BRANCHING TREES

The essential motive of our studies is a trial to answer the
intriguing question whether is it possible for the degree of cou-
pling to have a value higher than unity. A dogma in the physical
theory of, e.g., biological molecular motors is the assumption
that for making a single step along its track the motor molecule
has to hydrolyze at least one molecule of ATP [20]. Several
years ago this assumption has been questioned by a group of
Japanese biophysicists from the Yanagida laboratory who, join-
ing a specific nanometry technique with the microscopy fluo-
rescence spectroscopy, shown that the myosin II head can make
several steps along the actin filament per ATP molecule hy-
drolyzed [21; 22]. The structure of myosin II is similar to that
of small G proteins, e.g., protein Ras (rat sarcoma) p21, both
proteins having a common ancestor [23]. After the bounded
nucleotide triphosphate hydrolysis, both in the G proteins [24]
and in the myosin II [25; 26] one of the α helices unwinds
in part what makes the neighboring region partly disordered,
highly flexible, thus fluctuating. Also for the transcription fac-
tor p53 a DNA binding core domain is partly disordered [27].
The commonly assumed model of facilitated, alternating 3- and
1-dimensional passive diffusion, does not explain all the known
facts concerning the search for a proper biding site on DNA
[28], so a hypothesis that this search can be active, using multi-
ply the free energy of a single ATP molecule hydrolysis seems
reasonable.

No conventional chemical kinetics approach is able to ex-
plain such behaviors. In Refs. [13] and [12], basing on approxi-
mations carried too far, we suggested that the degree of coupling
can exceed unity already for reactions proceeding through sin-
gle pairs of transition substates. In Ref. [8] we proved the theo-
rem that the value of the degree of coupling should be lower or
at the most equal to unity, but only in the case when the input
and output reactions proceed through single pairs of transition
conformational substates. It is reasonable to suppose that a pos-
sibility of higher degree of coupling is realized if the output gate
is extended to two or more pairs of the transition substates. In
fact, it is obvious that replacing the single output gate in the
scheme in Fig. 2(a) by n gates succeeding each other, we get the
degree of coupling ε = n. Such reasoning has been proposed
in order to explain multiple stepping of the myosin molecule
along the actin filament [22]. One can also imagine an incorpo-
ration of a system of additional nonreactive transitions what was
for the first time considered by Terada and coworkers [29]. In
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Figure 5. Extension of the kinetic scheme in Fig. 2 (c) to one input and
two output gates. Obligatory transitions are drawn by arrows. If no other
transitions are realized, the degree of coupling between second and first
reaction equals two. Otherwise, it is lower than two but possibly higher
than one.

Fig. 5 a scheme is shown with one input and two output gates,
being an extension of the kinetic scheme in Fig. 2(c). Unfortu-
nately, even in the case of only two output gates the analytical
formulas are so complex and not transparent that serious ap-
proximations are needed to be made from the very beginning.
Being not able to formulate presently such approximations, we
decided to apply computer experiment for a preliminary study
of the problem.

Since the formulation by Bak and Sneppen a cellular automa-
ton model of the Eldredge and Gould punctuated equilibriums
[30], the biological evolution is more and more often consid-
ered as a self-organized criticality phenomenon [31; 32]. There
are grounds to suppose that the conformational transition net-
works, like two networks of the systems biology: the protein
interaction network and the metabolic network, have evolved to
reach a scale-free structure [8]. A controversy emerges if this
structure is simultaneously small-world or fractal. The former
feature is suggested by results of molecular dynamics simula-
tions for small atomic clusters [33] and by a specific spatial or-
ganization of proteins [34]. The latter has been shown already
in the pioneer papers from the Hans Frauenfelder laboratory [3]
and confirmed in early molecular dynamics simulations for the
very proteins [6; 7]. Only recently, an apparent contradiction
between fractality and small-worldness have been explained by
application of the renormalization group technique [35]. It ap-
pears that on adding to an original fractal network shortcuts with
the distance r distribution following the power law r−α, a tran-
sition to the small world network occurs below some critical
value of the exponent α. Close to this critical value the network
can be fractal in a small length-scale, simultaneously having the
small-world features in the large length-scale and this is the case
of the protein interaction network, the metabolic network and,
probably, the protein conformational transition network as well.

The topological structure of the flow (of probability, metabo-
lites, energy or information) through a network is characterized
by a spatial spanning tree composed of the most conducting
links not involved in cycles. It is referred to as the skeleton [36]
or the backbone [37] of the network, all the rejected links being
considered as shortcuts. The skeleton of the scale-free and frac-
tal network is also scale-free and fractal. For the scale-free frac-
tal trees a criticality feature appears important that denotes the
presence of a plateau equal to unity in the mean branching num-
ber dependence on the distance from the skeleton root. The crit-
ical trees can be completed to self-similar scale-free networks
and such is the case of the protein interaction and metabolic
networks [36; 38].

Fig. 6(a) shows a scale-free fractal tree with N = 200 nodes
constructed following the algorithm described in Ref. [36], and
Fig. 6(b) shows an extension of this tree by 200 shortcuts with
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Figure 6. (a) Exemplifying realization of a scale-free fractal tree with
N = 200 nodes constructed following the algorithm described in
Ref. [36]. The single input and output gates are distinguished, chosen
for the Monte Carlo simulations. (b) Tree from the upper figure extended
by 200 shortcuts with the distance distribution following the power law
r2 what makes the network a scale free small world. Four output gates
are distinguished, chosen for the Monte Carlo simulations; the unlabeled
largest hub is the fourfold degenerated complement gate 2′′.

the distance distribution following the power law r2, with neg-
ative α, what makes the network a scale free small world. To
provide the network with a stochastic dynamics described by
Eq. (1), we assume the probability of changing a node to any of
its neighbors to be the same in each random walk step. Conse-
quently, the transition probability from the node l to the neigh-
boring node l′ per computer step

wl′l = 1/kl , (9)

where kl is the number of links (the degree) of the node l. The
network with such a dynamics cannot be isoenergetic and fol-
lowing the detailed balance principle the equilibrium occupa-
tion probability of the node l,

peq
l = kl/∑

l′
kl′ . (10)

To complete Ref. [8], for the system of gates shown in
Fig. 6(a) we performed a series of Monte Carlo simulations and

found ε = 0.99 for mean times of external transitions τ1 = τ2 =
40, those times being the order of magnitude shorter than the in-
ternal relaxation time τrx = 400, and ε = 0.88 for τ1 = τ2 = 400.
In the latter case of the comparable external and internal transi-
tion rates, there is some little slippage, but the output reaction
proceeds backward relatively rarely. The case of multiple out-
put gates needs more systematic studies. For the system of gates
shown in Fig. 6(b) and τ1 = τ2 = 40 we found ε = 1.40, larger
then unity. Random search for more optimal configuration of
gates indicates a possibility of obtaining much higher value of
the degree of coupling.

SUMMARY

It is now well established that most if not all enzymatic
proteins display a slow stochastic dynamics of transitions be-
tween a variety of conformational substates composing their
native state. This makes a possibility of chemical transforma-
tions to proceed before the conformational equilibrium has been
reached in the actual chemical state. In the closed reactor, it
results in the presence of transient, non-exponential stages of
the reactions. In the open reactor, a consequence is the ne-
cessity of determining the steady-state reaction fluxes by mean
first-passage times between transition conformational substates
of the reactions rather than by conventional reaction rate con-
stants. A hypothesis is stated that, like higher level biologi-
cal networks: the protein interaction network and the metabolic
network, the protein conformational transition networks have
evolved in a process of self-organized criticality. All three
classes of networks are scale-free and, probably, display a tran-
sition from the fractal organization in a small length scale to
the small-world organization in the large length scale. Good
mathematical models of such networks are stochastic critical
branching trees extended by long-range shortcuts.

Biological molecular machines are proteins that operate un-
der isothermal conditions hence are referred to as free energy
transducers. They can be formally considered as enzymes
that simultaneously catalyze two chemical reactions: the free
energy-donating (input) reaction and the free energy-accepting
(output) one. The degree of coupling between the output and the
input reaction fluxes have been studied both theoretically and
by means of the Monte Carlo simulations on model networks.
In the steady state, on taking advantage of the assumption that
each reaction proceeds through a single pair (the gate) of tran-
sition conformational substates of the enzyme-substrates com-
plex, the degree of coupling between the output and the input
reaction fluxes has been expressed in terms of the mean first-
passage times between the distinguished substates. The theory
has been confronted with the results of random walk simulations
on various model networks.

For single input and output gates the degree of coupling val-
ues cannot exceed unity. As some experiments for the myosin
II and the dynein motors suggest such exceeding, looking for
conditions of increasing the degree of coupling value over unity
(realization of a ’molecular gear’) challenges the theory. Prob-
ably it holds also for the G-proteins and transcription factors,
mutations of which can result in the cancerogenesis. Study sim-
ulations of random walks on several model networks involving
more extended gates indicate that the case of the degree of cou-
pling with the value higher than one is realized in a natural way
on the mentioned above critical branching trees extended by
long-range shortcuts. For short-range shortcuts, the networks
are scale-free and fractal, and represent an ideal model for the
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biomolecular machines with the tight coupling, i.e., with the de-
gree of coupling value equal exactly to unity.
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[9] M. Kurzyński, A synthetic picture of intramolecular dy-
namics of proteins. Towards a contemporary statistical
theory of biochemical processes, Progr. Biophys. Molec.
Biol. vol. 69, pp. 23-82, 1998.

[10] B. Widom, Molecular transitions and chemical reaction
rates, Science, vol. 148, pp. 1555-1560, 1965.

[11] S. H. Northrup and J. T. Hynes, The stable states picture of
chemical reactions, J. Chem. Phys. vol. 73, pp. 2700-2714,
1980.

[12] M. Kurzynski, The Thermodynamic Machinery of Life,
Springer, Berlin, 2006.
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